Skip to main content

Crack Propagations in Functionally Graded Material Using a Phase-Field NURBS-Based Finite Element Approach

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Numerical Modelling in Engineering (NME 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

This study presents a hybrid phase-field formulation combining isogeometric analysis with a local refinement multipatch algorithm (VUKIMS algorithm) to predict damage in functionally graded material structures. The power-law index of the Mori–Tanaka mixture rule will impact the critical force point. We have confirmed that this approach is an effective computational tool for functionally graded materials. As a result, the effective size of cubic NURBS elements is half of a length-scale parameter for balancing the achieved accuracy and computational cost in most examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koizumi M (1997) FGM activities in Japan. Compos Part B-Eng 28:1–4

    Article  Google Scholar 

  2. Craveiro F, Nazarian S, Bartolo H, Bartolo PJ, Pinto Duarte J (2020) An automated system for 3D printing functionally graded concrete-based materials. Additive Manuf 33. https://doi.org/10.1016/j.addma.2020.101146

  3. Shang C, Wang C, Li C, Yang G, Xu G, You J (2020) Eliminating the crack of laser 3D printed functionally graded material from TA15 to Inconel718 by base preheating. Opt Laser Technol 126. https://doi.org/10.1016/j.optlastec.2020.106100

  4. Griffith AA (1921) VI. The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of London. Ser Contain Papers Math Phys Char 221:163–198

    Google Scholar 

  5. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourdin B, Francfort GA, Marigo J-JJJOE (2008) The variational approach to fracture 91:5–148

    Google Scholar 

  7. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. J Numer Methods Eng 46:131–150

    Article  MathSciNet  Google Scholar 

  8. Nguyen NT, Bui TQ, Zhang C, Truong TT (2014) Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method. Eng Anal Boundary Elem 44:87–97

    Article  MathSciNet  Google Scholar 

  9. Yadav A, Godara R, Bhardwaj G (2020) A review on XIGA method for computational fracture mechanics applications. Eng Fract Mech 107001

    Google Scholar 

  10. Peake MJ, Trevelyan J, Coates G (2013) Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems. Comput Methods Appl Mech Eng 259:93–102. https://doi.org/10.1016/j.cma.2013.03.016

    Article  MathSciNet  MATH  Google Scholar 

  11. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int J Numer Meth Eng 83:1273–1311. https://doi.org/10.1002/nme.2861

    Article  MathSciNet  MATH  Google Scholar 

  12. Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161. https://doi.org/10.1007/s00466-014-1045-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95. https://doi.org/10.1016/j.cma.2012.01.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Ren HL, Zhuang XY, Anitescu C, Rabczuk T (2019) An explicit phase field method for brittle dynamic fracture. Comput Struct 217:45–56. https://doi.org/10.1016/j.compstruc.2019.03.005

    Article  Google Scholar 

  15. Deogekar S, Vemaganti K (2017) A computational study of the dynamic propagation of two offset cracks using the phase field method. Eng Fract Mech 182:303–321. https://doi.org/10.1016/j.engfracmech.2017.08.003

    Article  Google Scholar 

  16. Patil RU, Mishra BK, Singh IV, Bui TQ (2018) A new multiscale phase field method to simulate failure in composites. Adv Eng Softw 126:9–33. https://doi.org/10.1016/j.advengsoft.2018.08.010

    Article  Google Scholar 

  17. Alessi R, Freddi F (2017) Phase-field modelling of failure in hybrid laminates. Compos Struct 181:9–25

    Article  Google Scholar 

  18. Zhang P, Feng Y, Bui TQ, Hu X, Yao W (2020) Modelling distinct failure mechanisms in composite materials by a combined phase field method. Compos Struct 232:111551

    Google Scholar 

  19. Yin BB, Zhang LW (2019) Phase field method for simulating the brittle fracture of fiber reinforced composites. Eng Fract Mech 211:321–340. https://doi.org/10.1016/j.engfracmech.2019.02.033

    Article  Google Scholar 

  20. Zhang P, Hu X, Bui TQ, Yao W (2019) Phase field modeling of fracture in fiber reinforced composite laminate. Int J Mech Sci 161:105008

    Google Scholar 

  21. Hirshikesh, Natarajan S, Annabattula RK, Martínez-Pañeda E (2019) Phase field modelling of crack propagation in functionally graded materials. Compos Part B: Eng 169:239–248. https://doi.org/10.1016/j.compositesb.2019.04.003

  22. Torabi J, Ansari R (2020) Crack propagation in functionally graded 2D structures: A finite element phase-field study. Thin-Walled Struct 151. https://doi.org/10.1016/j.tws.2020.106734

  23. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  24. Coox L, Greco F, Atak O, Vandepitte D, Desmet W (2017) A robust patch coupling method for NURBS-based isogeometric analysis of non-conforming multipatch surfaces. Comput Methods Appl Mech Eng 316:235–260. https://doi.org/10.1016/j.cma.2016.06.022

    Article  MathSciNet  MATH  Google Scholar 

  25. Nguyen KD, E.Augarde C, Coombs WM, Nguyen-Xuan H, Abdel-Wahab M (2020) Non-conforming multipatches for NURBS-based finite element analysis of higher-order phase-field models for brittle fracture. Eng Fract Mech 235. https://doi.org/10.1016/j.engfracmech.2020.107133

  26. Nguyen KD, Nguyen-Xuan H (2015) An isogeometric finite element approach for three-dimensional static and dynamic analysis of functionally graded material plate structures. Compos Struct 132:423–439. https://doi.org/10.1016/j.compstruct.2015.04.063

    Article  Google Scholar 

  27. Piegl L, Tiller W (2012) The NURBS book. Springer Science & Business Media

    Google Scholar 

  28. Singh N, Verhoosel CV, de Borst R, van Brummelen EH (2016) A fracture-controlled path-following technique for phase-field modeling of brittle fracture. Finite Elem Anal Des 113:14–29. https://doi.org/10.1016/j.finel.2015.12.005

    Article  MathSciNet  Google Scholar 

  29. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778. https://doi.org/10.1016/j.cma.2010.04.011

    Article  MathSciNet  MATH  Google Scholar 

  30. Hadraba H, Maca K, Cihlar J (2004) Electrophoretic deposition of alumina and zirconia. Ceram Int 30:853–863. https://doi.org/10.1016/j.ceramint.2003.09.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge VLIR-UOS TEAM Project's financial support, VN2017TEA454A103, “An innovative solution to protect Vietnamese coastal riverbanks from floods and erosion”, funded by the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong D. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, K.D., Nguyen-Xuan, H., Abdel Wahab, M. (2022). Crack Propagations in Functionally Graded Material Using a Phase-Field NURBS-Based Finite Element Approach. In: Abdel Wahab, M. (eds) Proceedings of the 4th International Conference on Numerical Modelling in Engineering. NME 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-8806-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8806-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8805-8

  • Online ISBN: 978-981-16-8806-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics