Skip to main content

Pedogenesis and Soil Biota Interactions in the Pedosphere

  • Chapter
  • First Online:
Structure and Functions of Pedosphere

Abstract

Pedogenesis can be considered as the process of soil development influenced by several climatic, physical, geological and biological factors. The process of soil formation begins with the weathering of the parent material through sequences of changes. Before the formation of soil occurs, sequences of changes have to ensue to the parent material resulting in the establishment of different layers or stratums of soil commonly referred to as soil horizons. Soil biota consists of the microorganisms, soil animals and plants living all or part of their lives in or on the soil or pedosphere. Microorganisms found in the soil include bacteria, fungi, archaea and algae, while soil animals may include protozoa, nematodes, mites, springtails, spiders, insects and earthworms. Millions of species of soil organisms exist, but only a fraction of them are culturable and properly identified. Soil organisms serve numerous roles in the pedosphere. The most critical function played by soil organisms is the regulation of biogeochemical transformations, among several other roles. The formation and turnover of soil organic matter that include mineralization and sequestration of carbon, nutrient cycling, disease transmission and prevention, pollutant degradation and improvement of soil structure are some of the functions mediated by the soil biota. The combined mass of microorganisms in the soil otherwise known as microbial biomass is reliant upon soil properties and the source(s) of C available for energy and cell metabolism. Carbon sources to the soil organisms vary in their ability to be decomposed and nutrient content. Carbon turnover, decomposition and microbial activity often lead to increases in organic matter and soil aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beare MH et al (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22

    Article  CAS  Google Scholar 

  • Bernstein L (1975) Effects of salinity and sodicity on plant growth. Annu Rev Phytopathol 13:295–312

    Article  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162(3):617–631

    Article  PubMed  Google Scholar 

  • Bonkowsky M, Clarholm M (2012) Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool 51:237–247

    Google Scholar 

  • Bormann BT, Spaltenstein H, McClellan MH, Ugolini FC, Cromack K, Nay SM (1995) Rapid soil development after windthrow disturbance in pristine forests. J Ecol 83(5):747–757

    Article  Google Scholar 

  • Coleman DC, Crossley DA (1996) Fundamentals of soil ecology. Academic Press, London

    Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Craft C, Broome S, Campbell C (2002) Fifteen years of vegetation and soil development after brackish-water marsh creation. Restor Ecol 10(2):248–258

    Article  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus and ecosystem dynamics along a long term chronosequence in Hawaii. Ecology 76(5):1407–1424

    Article  Google Scholar 

  • Dance A (2008) What lies beneath. Nature 455(7214):724–725

    Article  CAS  PubMed  Google Scholar 

  • De Ridder-Duine AS, Kowalchuk GA, Gunnewiek PJAK, Smant W, van Veen JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357

    Article  CAS  Google Scholar 

  • Dini-Andreote F, Van Elsas JD (2019) The soil microbiome—an overview. In: Van Elsas JD, Trevors JT, Rosado AS, Nannipieri P (eds) Modern soil microbiology, 3rd edn. CRC Press, Baca Raton, pp 37–48

    Chapter  Google Scholar 

  • Donahue RL, Miller RW, Shickluna JC (1977) Soils: an introduction to soils and plant growth. Prentice-Hall, Upper Saddle River, pp 20–21

    Google Scholar 

  • Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull Natl Speleol Soc 39:23–32

    Google Scholar 

  • Escudero-Martinez C, Bulgarelli D (2019) Tracing the evolutionary routes of plant-microbiota interactions. Curr Opin Microbiol 49:34–40

    Article  PubMed  Google Scholar 

  • Fizpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018) Assembly of ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci U S A 115:1157–1165

    Google Scholar 

  • Fortuna A (2012) The soil biota. Nat Educ Knowl 3(10):1

    Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Greenhouse Gas Working Group (2010) Agriculture’s role in greenhouse gas emissions and capture. Greenhouse Gas Working Group Rep, Madison

    Google Scholar 

  • Gupta VV et al (1997) Life in the soil. Cooperative Research Centre for Soil & Land Management, Adelaide

    Google Scholar 

  • He C, Breuning-Madsen H, Awadzi TW (2007) Mineralogy of dust deposited during the Harmattan season in Ghana. Geografisk Tidsskrift 107(1):9–15

    Article  Google Scholar 

  • Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32(3/4):155–172

    Article  Google Scholar 

  • Jenny H (1994) Factors of soil formation: a system of quantitative pedology. Dover, New York

    Google Scholar 

  • Karathanasis AD, Wells KL (2004) A comparison of mineral weathering trends between two management systems on a catena of loess-derived soils. Soil Sci Soc Am J 53(2):582–588

    Article  Google Scholar 

  • Liu B, Nearing MA, Risse LM (1994) Slope gradient effects on soil loss for steep slopes. Trans Am Soc Agric Biol Eng 37(6):1835–1840

    Article  Google Scholar 

  • Lumenlearning (2013) Soil and plant microbiology. microbial ecology. http://courses.lumenlearning.com/boundless-microbiology/chapter/soil-and-plant-microbiology/. Retrieved 22 August 2021

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109(1):7–13. https://doi.org/10.1104/pp.109.1.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen EL (2008) Microbial biogeochemistry: a grand synthesis. In: Environmental microbiology: from genomes to biogeochemistry. Blackwell Publishing, Malden, pp 281–299

    Google Scholar 

  • Maier RM et al (2009) Environmental microbiology, 2nd edn. Academic, San Diego

    Google Scholar 

  • Martin FM, Perotto S, Bonfante P (2007) Mycorrhizal fungi: a fungal community at the interface between soil and roots. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface, 3rd edn. CRC Press, Boca Raton, pp 201–236

    Google Scholar 

  • Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin's last idea. Trends Ecol Evol 21(12):688–695

    Article  PubMed  Google Scholar 

  • Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen: a synthesis for temperate forests. Biogeochemistry 52(2):173–205

    Article  Google Scholar 

  • Nalbantoglu Z, Gucbilmez E (2001) Improvement of calcareous expansive soils in semi-arid environments. J Arid Environ 47(4):453–463

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23(5):375–396

    Article  CAS  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Oldeman LR (1992) Global extent of soil degradation. ISRIC bi-annual report 1991/1992. ISRIC, Wageningen, pp 19–36

    Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235

    Article  CAS  Google Scholar 

  • Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic cost of soil erosion and conservation benefits. Science 267(5201):1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Retallack GJ (2010) Lateritization and bauxitization events. Econ Geol 105(3):655–667

    Article  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    Article  CAS  PubMed  Google Scholar 

  • Samad A, Brader G, Pfaenbichler N, Sessitsch A (2019) Plant-associated bacteria and the rhizosphere. In: Van Elsas JD, Trevors JT, Rosado AS, Nannipieri P (eds) Modern soil microbiology, 3rd edn. CRC Press, Baca Raton, pp 163–178

    Chapter  Google Scholar 

  • Sapkota A (2020) Soil formation (pedogenesis)- factors, process/steps, examples. Accessed at: https://microbenotes.com/soil-formation-pedogenesis/. Retrieved: 22 August 2021

  • Saur É, Ponge JF (1988) Alimentary studies on the collembolan Paratullbergia callipygos using transmission electron microscopy. Pedobiologia 31(5):355–379

    Google Scholar 

  • Scalenghe R, Territo C, Petit S, Terribile F, Righi D (2016) The role of pedogenic overprinting in the obliteration of parent material in some polygenetic landscapes of Sicily (Italy). Geoderma Reg 7:49–58

    Article  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, van Thernaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana. Proc Natl Acad Sci U S A 111:585–592

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger WH (1982) Carbon storage in the caliche of arid soils: a case study from Arizona. Soil Sci 133(4):247–255

    Article  CAS  Google Scholar 

  • Shipitalo MJ, Le Bayon R-C (2004) Quantifying the effects of earthworms on soil aggregation and porosity. In: Edwards, Clive A (eds) Earthworm ecology, 2nd edn. CRC Press, Boca Raton, pp 183–200

    Chapter  Google Scholar 

  • Six J et al (2004a) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Six J, Bossuyt H, De Gryze S, Denef K (2004b) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79(1):7–31

    Article  Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 357–396

    Google Scholar 

  • Soil Quality Institute (2001) Grazing Lands Technology Institute, and National Soil Survey Center, Natural Resources Conservation Service, USDA. Rangeland Soil Quality-Soil Biota USDA, Natural Resources Conservation Service

    Google Scholar 

  • Sylvia DM et al (2005) Biological control of soil borne plant pathogens and nematodes. In: Principles and applications of soil microbiology. Pearson Education, Upper Saddle River, pp 633–635

    Google Scholar 

  • van Elsas JD, Jansson JK, Trevors JT (2007) Modern soil microbiology, 2nd edn. CRC Press, New York

    Google Scholar 

  • Van Elsas JD, de Araujo WL, Trevors JT (2019) Microbial interactions. In: Van Elsas JD, Trevors JT, Rosado AS, Nannipieri P (eds) Modern soil microbiology, 3rd edn. CRC Press, Baca Raton, pp 141–161

    Chapter  Google Scholar 

  • Wakatsuki T, Rasyidin A (1992) Rates of weathering and soil formation. Geoderma 52(3):251–263

    Article  Google Scholar 

  • Widmer F, Pesaro M, Zeyer J, Blaser P (2000) Preferential flow paths: biological ‘hot spots’ in soils. In: Bundt M (ed) Highways through the soil: properties of preferential flow paths and transport of reactive compounds. ETH Library, Zurich, pp 53–75

    Google Scholar 

  • Wilkinson MT, Humpreys GS (2005) Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates. Aust J Soil Res 43(6):767

    Article  CAS  Google Scholar 

  • Williams SM, Weil RR (2004) Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci Soc Am J 68(4):1403–1409

    Article  CAS  Google Scholar 

  • Yech YK, Dennis PG, Paungfoo-Lohienne C, Weber L, Brackin R, Ragan MA, Schmidt S, Hugenholtz P (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8:215–224

    Article  CAS  Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35(2):319–328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okon Godwin Okon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okon, O.G., Antia, U.E. (2022). Pedogenesis and Soil Biota Interactions in the Pedosphere. In: Giri, B., Kapoor, R., Wu, QS., Varma, A. (eds) Structure and Functions of Pedosphere. Springer, Singapore. https://doi.org/10.1007/978-981-16-8770-9_1

Download citation

Publish with us

Policies and ethics