Skip to main content

Indoor 3D Positioning Based on Bluetooth Beacons

  • Conference paper
  • First Online:
SMART Automatics and Energy

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 272))

Abstract

The work is devoted to the problem of determining the indoor object location in cases where the signal of satellite (GPS, GLONASS, etc.) is not available. In this case, alternative sources of navigation data are used to position objects: inertial navigation devices (accelerometers, gyroscopes), Bluetooth and Wi-Fi data transmission devices, atmospheric pressure sensor, magnetometer, etc. The use of Bluetooth beacons for indoor positioning has many advantages. Firstly, it is the possibility of arbitrary configuration of sensors in the room due to their small size and autonomy. Secondly, it is possible to build a system based on inexpensive and widespread equipment that does not require special professional skills of the personnel. The paper discusses the problem of positioning an object in three-dimensional space according to the data of Bluetooth devices located in the room and forming a multi-position beacon surveillance system. It is noted that for the successful operation of such a system, it is necessary to estimate in advance the characteristic error in estimating the coordinates of positioned objects and if necessary, change the configuration of the beacons. A model interpretation of the positioning problem in the form of a system of algebraic linear equations is proposed. Such a representation allows one to construct a priori theoretical estimates of the error in determining the object coordinates to determine areas of space where the positioning accuracy is insufficient. The paper presents the expected accuracy calculations data of solving the problem in various typical situations and the results of field experiments that confirm the calculations. In general, the study is optimistic about the prospects for solving 3D indoor positioning problems using Bluetooth beacons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Conference on Indoor Positioning and Indoor Navigation, available at: http://ipin-conference.org

  2. Davidson, P., Kirkko-Jaakkola, M., Collin, J., Takala, J.: Navigacionnyj algoritm s ispol’zovaniem planov zdanij i dannyh avtonomnyh datchikov (Navigation Algorithm Combining Building Plans with Autonomous Sensor Data). Gyroscopy and Navigation, is. 3, 188–196 (2015)

    Article  Google Scholar 

  3. Shchekotov, M., Kashevnik, A.: Comparative analysis of indoor positioning systems for smartphones. Proc. FRUCT. Conf. 43–48 (2012)

    Google Scholar 

  4. Zhelamskii, M.V.: Features of the construction of a positioning field for local navigation in enclosed spaces. Meas. Tech. 57(7), 791–799 (2014)

    Article  Google Scholar 

  5. Namiot, D., Makarychev, I.: On the alternative model of location marking on social networks. Int. J. Open. Inf. Technol. 8(2), 74–90 (2020)

    Google Scholar 

  6. Assur, O.S., Filaretov, G.F.: Razrabotka kompleksnogo metoda pozicionirovanija ob’ektov po dannym besprovodnyh setej Wi-Fi i ustrojstv BLE (Bluetooth Low Energy). Izvestija Instituta Inzhenernoj Fiziki, is. 2, 2–10 (2015)

    Google Scholar 

  7. Murashko, I.A., Khrabrov, D.E.: Metodika lokal'nogo pozicionirovanija na osnovanii Wi-Fi-seti universiteta (Methods of local positioning based on Wi-Fi-network of university). Vesnik Grodzenskaga dzjarzhaўnaga ўniversitjeta imja Janki Kupaly. Seryja 2: Matjematyka. Fizika. Infarmatyka, Vylichal'naja tjehnika i kiravanne, is 2:119–127 (2015)

    Google Scholar 

  8. Bolotova, S.Yu., Zonov, A.V., Tutin, A.P.: Indoor navigation in mobile applications. Programmnaya Injeneriya 9(1), 29–34 (2018)

    Google Scholar 

  9. Davidson, P., Kirkko-Jaakkola, M., Collin, J., Takala, J.: Navigacionnyj algoritm s ispol’zovaniem planov zdanij i dannyh avtonomnyh datchikov (Navigation Algorithm Combining Building Plans with Autonomous Sensor Data). Gyroscopy and Navigation, is 3, 188–196 (2015)

    Article  Google Scholar 

  10. Kronenwett, N., Ruppelt, J., Trommer, G.F.: Motion monitoring based on a finite state machine for precise indoor localization. Gyroscopy and Navigation, is 3, 190–199 (2017)

    Article  Google Scholar 

  11. Emel'yantsev, G.I., Stepanov, A.P., Blazhnov, B.A.: O reshenii navigacionnoj zadachi dlja letatel'nyh apparatov s ispol'zovaniem inercial'nogo modulja na mikromehanicheskih datchikah i nazemnyh radioorientirov (Solution of Aircraft Navigation Problem using MEMS IMU and Ground Radio Sources). Gyroscopy and Navigation (Giroskopija i navigacija), is 1:3–17 (2017)

    Google Scholar 

  12. Anbarasu, B., Anitha, G.: Indoor scene recognition for micro aerial vehicles navigation using enhanced SIFT-ScSPM descriptors. J. Navigation 73(1), 37–55 (2020)

    Article  Google Scholar 

  13. Tsai, H.-Y., Hishiyama, R., Kuwahara Y., Leiri, Y.: Vision-based indoor positioning (VBIP)—an indoor AR navigation system with a virtual tour guide. Lecture Notes in Computer Science, (11677 LNCS), pp. 96–109 (2019)

    Google Scholar 

  14. Gmar, D.V., Dyuldina, K.I., Snopko, S.I., Shakhgeldyan, K.J., Kryukov, V.V.: Indoor navigation service based on Wi-Fi positioning. In: RPC 2017—Proceedings of the 2nd Russian-Pacific Conference on Computer Technology and Applications, pp. 68–71 (2017)

    Google Scholar 

  15. Stepanov, O.A.: Map-aided navigation, indoor navigation, and fingerprint-based positioning. Common features and differences. In: 23rd Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2016 - Proceedings 23, pp. 568–571 (2016)

    Google Scholar 

  16. Voronov, R.V., Malodushev, S.V.: Dinamicheskoe sozdanie kart urovnja Wifi-signalov dlja sistem lokal’nogo pozicionirovanija (Dynamic Creation Of Wi-Fi-Signal Level Maps For Location Systems). Syst Means Informatics, is 1, 80–92 (2014)

    Google Scholar 

  17. Saleh, H.M., Aleksandrov, D.V.: Indoor positioning using WI-FI-access points. Informatsionno-Izmeritelniye i Upravlyaushie Systemy, 10(7), 29–36 (2012)

    Google Scholar 

  18. Bulychev, V.Y., Bulychev, Y.G., Ivakina, S.S., Nasenkov, I.G., Nikolas, P.I., Chepel, E.N.: Substantiation of methods for optimal estimation of target motion parameters in triangulation location systems. J. Comput. Syst. Sci. Int. 54(4), 593–608 (2015)

    Article  MathSciNet  Google Scholar 

  19. Vasiliev, K.K., Bobkov, A.V.: Dinamicheskoe ispol'zovanie orientirov dlja ocenki koordinat avtonomnyh neobitaemyh podvodnyh apparatov (Dynamic use landmarks for coordinates estimation). Informatsionno-Izmeritelniye i Upravlyaushie Systemy, is. 12, 11–14 (2017)

    Google Scholar 

  20. Martynyuk, M.V., Generalov, A.V., Naumov, S.S., Zaletnov, S.E., Dmitriev, D.V., Timofeeva, O.P.: Development of a system of local acoustic positioning based on a personal computer. Measurement Techniques, is. 10, 1179–1184 (2016)

    Article  Google Scholar 

  21. Grinyak, V.M., Devyatisil’nyj, A.S.: Dynamic adjustment of multiposition observing system with respect to trajectory measurements. J. Comput. Syst. Sci. Int. 38, 124–130 (1999)

    MATH  Google Scholar 

  22. Grinyak, V.M., Devyatisilny, A.S., Shurygin, A.V.: Feasibility study of indoor navigation with bluetooth beacons. Informatsionniye Tehnologii 24(9), 610–617 (2018)

    Article  Google Scholar 

  23. Grinyak, V.M., Devyatisilnyi, A.S., Lulko, V.I., Tsibanov, P.A.: Indoor positioning system based on Bluetooth beacons. Modelirovanie, Optimizacija i Informacionnye Tehnologii 6(2), 132–143 (2018)

    Google Scholar 

  24. Grinyak, V.M., Grinyak, T.M., Tsibanov, P.A.: Indoor positioning system based on bluetooth beacons. The Territory of New Opportunities. The Herald of Vladivostok State University of Economics 10(2), 137–147 (2018)

    Google Scholar 

  25. Popp, M., Prophet, S., Scholz, G., Trommer, G.F.: A novel guidance and navigation system for MAVs capable of autonomous collision-free entering of buildings. Gyroscopy and navigation, is. 3, 3–17 (2015)

    Google Scholar 

  26. Motley, A.J., Keenan, J.M.P.: Personal communication radio coverage in buildings at 900 MHz and 1700 MHz. Electron. Lett. 24, 763–764 (1988)

    Article  Google Scholar 

  27. Grinyak, V.M.: Spatial navigation problem under incomplete measuring information conditions. Dalnevostochnyi matematicheskyi jurnal 1(1), 93–101 (2000)

    Google Scholar 

  28. Grinyak, V.M., Grinyak, T.M., Ivanenko, Y.S.: Dinamicheskaja vystavka mnogopozicionnoj sistemy nabljudenija (Dynamic Adjustment of Multiposition Observing System). Modelirovanie, Optimizacija i Informacionnye Tehnologii, is. 3, 12 (2017)

    Google Scholar 

  29. Malyshev, A.N.: Vvedeniye v vychislitelnuyu lineynuyu algebru (Introduction to computing linear algebra). Nauka, Novosibirsk (1991)

    Google Scholar 

  30. Kryzhko, I.B., Glushakova, T.N. (2007). On solvability of the inverse trajectory problems. Vestnik voronejskogo gosudarstvennogo universiteta. Seriya: Sistemnyi analis i informatsionniye tehnologii, is 1, 148–151

    Google Scholar 

  31. SKYLAB Low Power Consumption Waterproof Bluetooth beacon -VG02, available at: http://www.skylabmodule.com/skylab-low-power-consumption-waterproof-bluetooth-eddystone-nordic-chipset-beacon-itag-bluetooth-beacon-vg02/

  32. Dulimarta, H.S., Jain, A.K.: Mobile robot localization in indoor environment. Pattern Recogn. 30(1), 99–111 (1997)

    Article  Google Scholar 

  33. Ranganathan, P., Hayet, J.B., Devy, M., Hutchinson, S., Lerasle, F.: Topological navigation and qualitative localization for indoor environment using multi-sensory perception. Robot. Auton. Syst. 41(2–3), 137–144 (2002)

    Article  Google Scholar 

  34. Barabanova, L.P.: On the geometric factor of difference range positioning with a minimal number of beacons. J. Comput. Syst. Sci. Int. 44(3), 413–420 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grinyak, V., Devyatisilnyi, A., Shurygin, A. (2022). Indoor 3D Positioning Based on Bluetooth Beacons. In: Solovev, D.B., Kyriakopoulos, G.L., Venelin, T. (eds) SMART Automatics and Energy. Smart Innovation, Systems and Technologies, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-16-8759-4_30

Download citation

Publish with us

Policies and ethics