Skip to main content

Prediction of Ignition Modes in Shock Tubes Relevant to Engine Conditions

  • Chapter
  • First Online:
Engines and Fuels for Future Transport

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

A theoretical prediction of ignition modes in shock tubes relevant to engine conditions is proposed and validated with a wide range of shock tube experiment data. The predictive Sankaran number, \(\mathrm{{Sa}_p}\), is adapted to distinguish between the weak and strong ignition modes. The non-ideal temperature and pressure rise inherently occurring in combustion devices is considered in the formulation of \(\mathrm{{Sa}_p}\). The \(\mathrm{{Sa}_p}\) criterion is then validated by the experimental data in shock tubes for a number of fuels exhibiting negative temperature coefficient (NTC) and non-NTC behavior. It is demonstrated that the \(\mathrm{{Sa}_p}\) criterion can accurately predict the weak and strong ignition modes regardless of the NTC and non-NTC fuels over a wide range of pressure and temperature. \(\mathrm{{Sa}_p}\) \(= 1\) serves as a reliable marker to delineate the boundary between the strong ignition (\(\mathrm{{Sa}_p}\) \(< 1\)) and weak ignition (\(\mathrm{{Sa}_p}\) \(> 1\)). As inspired by the newly-developed \(\mathrm{{Sa}_p}\) criterion in shock tube, it strongly suggests that the sensitivity of ignition delay variation in non-constant volume reactors such as the polytropic compression/expansion heating effect in an internal combustion engine and in a rapid compression machine (RCM) should be incorporated in evaluating an ignition criterion to better predict the ignition modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MJM, Luong MB, Sow A, Hernández Pérez FE, Im HG (2018) Probabilistic approach to predict abnormal combustion in spark ignition engines. SAE paper (2018) 2018–01–1722

    Google Scholar 

  • Chaos M, Dryer FL (2010) Chemical-kinetic modeling of ignition delay: considerations in interpreting shock tube data. Int J Chem Kinet 42:143–150

    Article  Google Scholar 

  • Dai P, Chen Z, Chen S, Ju Y (2015) Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc Combust Inst 35:3045–3052

    Article  Google Scholar 

  • Dai P, Qi C, Chen Z (2017) Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient. Proc Combust Inst 36:3643–3650

    Article  Google Scholar 

  • Davidson DF, Hanson RK (2004) Interpreting shock tube ignition data. Int J Chem Kinet 36:510–523

    Article  Google Scholar 

  • Davidson DF, Hanson RK (2009) Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements. Shock Waves 19:271–283

    Article  Google Scholar 

  • Donovan MT, He X, Zigler BT, Palmer TR, Wooldridge MS, Atreya A (2004) Demonstration of a free-piston rapid compression facility for the study of high temperature combustion phenomena. Combust Flame 137:351–365

    Article  Google Scholar 

  • Figueroa-Labastida M, Badra J, Elbaz AM, Farooq A (2018) Shock tube studies of ethanol preignition. Combust Flame 198:176–185

    Article  Google Scholar 

  • Figueroa-Labastida M, Badra J, Farooq A (2021) Dual-camera high-speed imaging of the ignition modes of ethanol, methanol and n-hexane in a shock tube. Combust Flame 224:33–42

    Article  Google Scholar 

  • Figueroa-Labastida M, Luong MB, Badra J, Im HG, Farooq A (2021b) Experimental and computational studies of methanol and ethanol preignition behind reflected shock waves. Combust Flame

    Google Scholar 

  • Goldsborough SS, Hochgreb S, Vanhove G, Wooldridge MS, Curran HJ, Sung C-J (2017) Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena. Prog Energy Combust Sci 63:1–78

    Article  Google Scholar 

  • Grogan KP, Ihme M (2015) Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems. Proc Combust Inst 35:2181–2189

    Article  Google Scholar 

  • Hanson R, Davidson D (2014) Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog Energy Combust Sci 44:103–114

    Article  Google Scholar 

  • Hargis JW, Petersen EL (2015) Methane ignition in a shock tube with high levels of CO\(_{2}\) dilution: consideration of the reflected-shock bifurcation. Energy Fuels 29:7712–7726

    Article  Google Scholar 

  • Im HG, Pal P, Wooldridge MS, Mansfield AB (2015) A regime diagram for autoignition of homogeneous reactant mixtures with turbulent velocity and temperature fluctuations. Combust Sci Technol 187:1263–1275

    Article  Google Scholar 

  • Javed T, Badra J, Jaasim M, Es-Sebbar E, Labastida MF, Chung SH, Im HG, Farooq A (2017) Shock tube ignition delay data affected by localized ignition phenomena. Combust Sci Technol 189:1138–1161

    Article  Google Scholar 

  • Kalghatgi GT (2015) Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc Combust Inst 35:101–115

    Article  Google Scholar 

  • Kalghatgi GT, Bradley D (2012) Pre-ignition and ‘super-knock’ in turbo-charged spark-ignition engines. Int J Engine Res 13:399–414

    Article  Google Scholar 

  • Kim SO, Luong MB, Chen JH, Yoo CS (2015) A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature. Combust Flame Combust Flame 162:717–726

    Article  Google Scholar 

  • Lamnaouer M, Kassab A, Divo E, Polley N, Garza-Urquiza R, Petersen E (2014) A conjugate axisymmetric model of a high-pressure shock-tube facility. Int J Numer Method H 24:873–890

    Article  Google Scholar 

  • Li H, Owens ZC, Davidson DF, Hanson RK (2008) A simple reactive gasdynamic model for the computation of gas temperature and species concentrations behind reflected shock waves. Int J Chem Kinet 40:189–198

    Article  Google Scholar 

  • Luong MB, Desai S, Hernández Pérez FE, Sankaran R, Johansson B, Im HG (2019) Prediction of ignition regimes in DME/air mixtures with temperature and concentration fluctuations. AIAA SciTech 2019 Forum. https://doi.org/10.2514/6.2019-2241

  • Luong MB, Figueroa-Labastida M, Farooq A, Im HG (2021) Prediction of preignition tendency in shock tubes. Combust Flame (in preparation)

    Google Scholar 

  • Luong MB, Figueroa-Labastida M, Tingas E-A, Sow A, Pérez FEH, Badra J, Farooq A, Im HG (2019) Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations. ICDERS2019 Paper 297

    Google Scholar 

  • Luong MB, Luo Z, Lu T, Chung SH, Yoo CS (2013) Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities. Combust Flame 160:2038–2047

    Article  Google Scholar 

  • Luong MB, Lu T, Chung SH, Yoo CS (2014) Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature. Combust Flame 161:2878–2889

    Article  Google Scholar 

  • Luong MB, Yu GH, Lu T, Chung SH, Yoo CS (2015) Direct numerical simulations of ignition of a lean \(n\)-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion. Combust Flame 162:4566–4585

    Article  Google Scholar 

  • Luong MB, Yu GH, Chung SH, Yoo CS (2017) Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: a comparative DNS study. Proc Combust Inst 36:3623–3631

    Article  Google Scholar 

  • Luong MB, Yu GH, Chung SH, Yoo CS (2017) Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: chemical aspects. Proc Combust Inst 36:3587–3596

    Article  Google Scholar 

  • Luong MB, Sankaran R, Yu GH, Chung SH, Yoo CS (2017) On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions. Combust Flame 183:309–321

    Article  Google Scholar 

  • Luong MB, Hernández Pérez FE, Im HG (2020) Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations. Combust Flame 213:382–393

    Article  Google Scholar 

  • Luong MB, Desai S, Hernández Pérez FE, Sankaran R, Johansson B, Im HG (2021a) A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneities. Proc Combust Inst 38:5781–5789

    Google Scholar 

  • Luong MB, Desai S, Hernández Pérez FE, Sankaran R, Johansson B, Im HG (2021) Effects of turbulence and temperature fluctuations on knock development in an ethanol/air mixture. Flow Turbul Combust 106:575–595

    Article  Google Scholar 

  • Lutz AE, Kee RJ, Miller JA, Dwyer HA, AK (1989) Oppenheim, Dynamic effects of autoignition centers for hydrogen and c1,2-hydrocarbon fuels. Symp (Int) Combust 22:1683–1693

    Google Scholar 

  • Mansfield AB, Wooldridge MS (2014) High-pressure low-temperature ignition behavior of syngas mixtures. Combust Flame 161:2242–2251

    Article  Google Scholar 

  • Mansfield AB, Wooldridge MS, Di H, He X (2015) Low-temperature ignition behavior of iso-octane. Combust Flame 139:79–86

    Google Scholar 

  • Mehl M, Pitz WJ, Westbrook CK, Curran HJ (2011) Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc Combust Inst 33:193–200

    Article  Google Scholar 

  • Meyer JW, Oppenheim AK (1971) On the shock-induced ignition of explosive gases. Symp (Int) Combust 13:1153–1164

    Google Scholar 

  • Nativel D, Cooper SP, Lipkowicz T, Fikri M, Petersen EL, Schulz C (2020) Impact of shock-tube facility-dependent effects on incident- and reflected-shock conditions over a wide range of pressures and mach numbers. Combust Flame 217:200–211

    Article  Google Scholar 

  • Pal P, Valorani M, Arias PG, Im HG, Wooldridge MS, Ciottoli PP, Galassi RM (2017) Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations. Proc Combust Inst 36:3705–3716

    Article  Google Scholar 

  • Pan J, Wei H, Shu G, Chen Z, Zhao P (2016) The role of low temperature chemistry in combustion mode development under elevated pressures. Combust Flame 174:179–193

    Article  Google Scholar 

  • Pan J, Wei H, Shu G, Chen R (2017) Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions. Combust Flame 185:63–74

    Article  Google Scholar 

  • Pan J, Hu Z, Wei H, Wang L, He Y, Wang X (2020) Forced turbulence affected auto-ignition and combustion modes under engine-relevant conditions. Appl Energy Combust Sci 1–4:100015

    Google Scholar 

  • Pan J, Zheng Z, Wei H, Pan M, Shu G, Liang X (2021) An experimental investigation on pre-ignition phenomena: Emphasis on the role of turbulence. Proc. Combust. Inst. 38:5801–5810

    Article  Google Scholar 

  • Pang GA, Davidson DF, Hanson RK (2009) Experimental study and modeling of shock tube ignition delay times for hydrogen-oxygen-argon mixtures at low temperatures. Proc Combust Inst 32:181–188

    Article  Google Scholar 

  • Petersen EL, Hanson RK (2001) Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10:405–420

    Article  Google Scholar 

  • Pryor O, Barak S, Koroglu B, Ninnemann E, Vasu SS (2017) Measurements and interpretation of shock tube ignition delay times in highly CO2 diluted mixtures using multiple diagnostics. Combust Flame 180:63–76

    Article  Google Scholar 

  • Sankaran R, Im HG, Hawkes ER, Chen JH (2005) The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen-air mixture. Proc Combust Inst 30:875–882

    Article  Google Scholar 

  • Sow A, Lee BJ, Hernández Pérez FE, Im HG (2019) Detonation onset in a thermally stratified constant volume reactor. Proc Combust Inst 37:3529–3536

    Article  Google Scholar 

  • Strozzi C, Mura A, Sotton J, Bellenoue M (2012) Experimental analysis of propagation regimes during the autoignition of a fully premixed methane-air mixture in the presence of temperature inhomogeneities. Combust Flame 159:3323–3341

    Article  Google Scholar 

  • Terashima H, Matsugi A, Koshi M (2017) Origin and reactivity of hot-spots in end-gas autoignition with effects of negative temperature coefficients: Relevance to pressure wave developments. Combust Flame 184:324–334

    Article  Google Scholar 

  • Towery CAZ, Poludnenko AY, Hamlington PE (2020) Detonation initiation by compressible turbulence thermodynamic fluctuations. Combust Flame 213:172–183

    Article  Google Scholar 

  • Troutman VA, Strand CL, Campbell MF, Tulgestke AM, Miller VA, Davidson DF, Hanson RK (2016) High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall. Appl Phys B 122:56

    Article  Google Scholar 

  • Walton SM, He X, Zigler BT, Wooldridge MS, Atreya A (2007) An experimental investigation of iso-octane ignition phenomena. Combust Flame 150:246–262

    Article  Google Scholar 

  • Wang Z, Liu H, Reitz RD (2017) Knocking combustion in spark-ignition engines. Prog Energy Combust Sci 61:78–112

    Article  Google Scholar 

  • Wei H, Chen C, Shu G, Liang X, Zhou L (2018) Pressure wave evolution during two hotspots autoignition within end-gas region under internal combustion engine-relevant conditions. Combust Flame 189:142–154

    Article  Google Scholar 

  • Yamashita H, Kasahara J, Sugiyama Y, Matsuo A (2012) Visualization study of ignition modes behind bifurcated-reflected shock waves. Combust Flame 159:2954–2966

    Article  Google Scholar 

  • Yu H, Chen Z (2015) End-gas autoignition and detonation development in a closed chamber. Combust Flame 162:4102–4111

    Article  Google Scholar 

  • Zeldovich YB (1980) Regime classification of an exothermic reaction with nonuniform initial conditions. Combust Flame 39:211–214

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by King Abdullah University of Science and Technology and used the resources of the KAUST Supercomputing Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Bau Luong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luong, M.B., G. Im, H. (2022). Prediction of Ignition Modes in Shock Tubes Relevant to Engine Conditions. In: Kalghatgi, G., Agarwal, A.K., Leach, F., Senecal, K. (eds) Engines and Fuels for Future Transport. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8717-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8717-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8716-7

  • Online ISBN: 978-981-16-8717-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics