Skip to main content

Efficient and Provably Secure Schemes for Vehicular Ad-Hoc Networks

  • Book
  • © 2022

Overview

  • Designs secure and efficient signature and signcryption schemes for VANETs
  • Provides security proof in the random oracle model
  • Analyzes the performance in detail in terms of computational and communication/storage cost

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This book focuses on the design of secure and efficient signature and signcryption schemes for vehicular ad-hoc networks (VANETs). We use methods such as public key cryptography (PKI), identity-based cryptography (IDC), and certificateless cryptography (CLC) to design bilinear pairing and elliptic curve cryptography-based signature and signcryption schemes and prove their security in the random oracle model. The signature schemes ensure the authenticity of source and integrity of a safety message. While signcryption schemes ensure authentication and confidentiality of the safety message in a single logical step. To provide readers to study the schemes that securely and efficiently process a message and multiple messages in vehicle to vehicle and vehicle to infrastructure communications is the main benefit of this book. In addition, it can benefit researchers, engineers, and graduate students in the fields of security and privacy of VANETs, Internet of vehicles securty, wireless body area networks security, etc.

Authors and Affiliations

  • School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

    Ikram Ali, Yong Chen, Meng Li

  • Department of CS & IT, University of Malakand, Khyber Pakhtunkhwa, Pakistan

    Mohammad Faisal

About the authors

Ikram Ali, he is currently working at the School of Automation Engineering, University of Electronic Science and Technology of China (UESTC) . He received my PhD degree majoring Computer Science and Technology from UESTC in 2020 . Currently, I am working as Post-doctoral researcher and research assistant at the UESTC. His research interest includes Cryptography and Network Security, Security and Privacy of Vehicular Ad-Hoc Networks, Internet of Things Security, Wireless Body Area Networks Security, and Interconnected Vehicular Platoon, Distributed Fault Tolerant Control and Adaptive Control.


Yong Chen (Senior Member, IEEE),he is currently working at the School of Automation Engineering, University of Electronic Science and Technology of China (UESTC) . He received the Ph.D. degree from Chongqing University, Chongqing in  2007, he was a Visiting Scholar with The University of Adelaide during 2013-2014. Since 2015, he has been a Professor and the Ph.D. Supervisorwith the School of Automation Engineering, and the Director of the Institute of Electric Vehicle Driving System and Safety Technology, UESTC. Since 2021, he was also work in the Yangtze Delta Region Institute (Huzhou) ,UESTC. He has published over 100 technical papers in journals and conferences, and over 50 Chinese patents. His current research interests include Networked control system, Cyber physical systems, Fault-tolerant control and reliability and Advanced control.


Mohammad Faisal, He is currently working at the department of computer science and IT, University of Malakand Pakistan, he received his M.S. degree in information security management from SZABIST, Pakistan, in 2012, and the Ph.D. degree in network security from the Department of Computer Science and Information Technology, University of Malakand in 2018. His research interests include ML and security of wireless ad hoc networks MANETs, VANETs, IoT, Cloud, Fog, Edge, Blockchain and digital forensics.


Meng Li is currently working at the School of Automation Engineering, UESTC, he received his Ph.D. degree in control science and engineering from UESTC in 2018. From 2017 to 2018, he was a Joint PhD student with the School of Electrical and Electronic Engineering, The University of Adelaide. Since Jan. 2019, He was a postdoctor with UESTC. He is currently an associate researcher with UESTC. He has published over 20 technical papers in journals and conferences. His research interests include networked control systems, cyberphysical systems and sliding-mode control.


Bibliographic Information

  • Book Title: Efficient and Provably Secure Schemes for Vehicular Ad-Hoc Networks

  • Authors: Ikram Ali, Yong Chen, Mohammad Faisal, Meng Li

  • DOI: https://doi.org/10.1007/978-981-16-8586-6

  • Publisher: Springer Singapore

  • eBook Packages: Engineering, Engineering (R0)

  • Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

  • Hardcover ISBN: 978-981-16-8585-9Published: 12 January 2022

  • Softcover ISBN: 978-981-16-8588-0Published: 13 January 2023

  • eBook ISBN: 978-981-16-8586-6Published: 11 January 2022

  • Edition Number: 1

  • Number of Pages: XIV, 230

  • Number of Illustrations: 13 b/w illustrations, 44 illustrations in colour

  • Topics: Wireless and Mobile Communication, Mobile and Network Security, Cryptology, Automotive Engineering

Publish with us