Skip to main content

A Comprehensive Study on Fruit Odour Detection and Classification Techniques Using eNose

  • Conference paper
  • First Online:
Advances in Micro-Electronics, Embedded Systems and IoT

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 838))

  • 499 Accesses

Abstract

This paper is an overview of various processes involved in the implementation of electronic nose for detection of fruit odour. Volatile gas detection techniques for fruits (especially mango) at different stages of ripening are given. These gases are detected by an array of sensors which are selected depending on the ability to detect the dominant gas component for the samples. Various pattern recognition algorithms along with different methods of training an artificial neural network (ANN) are stated. The major objective of the paper is to present a collective survey data on various procedures involved in determining the stages of ripeness in mango.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karakaya D, Ulucan O, Turkan M (2020) Electronic nose and its applications: a survey. Int J Autom Comput 17(2):179–209

    Article  Google Scholar 

  2. Brezmes J, Fructuoso ML, Llobet E, Vilanova X, Recasens I, Orts J et al (2005) Evaluation of an electronic nose to assess fruit ripeness. IEEE Sens J 5(1):97–108

    Google Scholar 

  3. Tang KT, Chiu SW, Pan CH, Hsieh HY, Liang YS, Liu SC (2010) Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 10(10):9179–9193

    Article  Google Scholar 

  4. Brattoli M, Cisternino E, Dambruoso PR, De Gennaro G, Giungato P, Mazzone A et al (2013) Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 13(12):16759–16800

    Google Scholar 

  5. Mesquita PR, Pena LC, Santos FND, Oliveira CCD, Magalhães-Junior JT, Nascimento AS, Rodrigues FM (2020) Mango (Mangifera indica) aroma discriminate cultivars and ripeness stages. J Braz Chem Soc 31(7):1424–1433

    Google Scholar 

  6. MacLeod AJ, Pieris NM (1984) Comparison of the volatile components of some mango cultivars. Phytochemistry 23(2):361–366

    Article  Google Scholar 

  7. Pino JA, Mesa J, Muñoz Y, Martí MP, Marbot R (2005) Volatile components from mango (Mangifera indica L.) cultivars. J Agric Food Chem 53(6):2213–2223

    Google Scholar 

  8. Hossain M, Rana M, Kimura Y, Roslan HA (2014) Changes in biochemical characteristics and activities of ripening associated enzymes in mango fruit during the storage at different temperatures. BioMed Res Int (2014)

    Google Scholar 

  9. Li Z, Wang N, Raghavan GV, Vigneault C (2009) Ripeness and rot evaluation of ‘Tommy Atkins’ mango fruit through volatiles detection. J Food Eng 91(2):319–324

    Article  Google Scholar 

  10. Thiruchelvam T, Landahl S, Terry LA (2020) Temporal variation of volatile compounds from Sri Lankan mango (Mangifera indica L.) fruit during ripening. J Agric Food Res 2:100053

    Google Scholar 

  11. White IR, Blake RS, Taylor AJ, Monks PS (2016) Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv. ‘Tommy Atkins’ by real-time measurement of volatile organic compounds. Metabolomics 12(3):57

    Google Scholar 

  12. Liu H, An K, Su S, Yu Y, Wu J, Xiao G, Xu Y (2020) Aromatic characterization of mangoes (Mangifera indica L.) using solid phase extraction coupled with gas chromatography–mass spectrometry and olfactometry and sensory analyses. Foods 9(1):75

    Google Scholar 

  13. Slaughter DC (2009) Nondestructive maturity assessment methods for mango. University of California, Davis, pp 1–18

    Google Scholar 

  14. Nouri FG, Chen Z, Maqbool M (2014). Monitoring mango fruit ripening after harvest using electronic nose (zNoseTM) technique. In: 5th international conference food engineering biotechnology, vol 65, p 8

    Google Scholar 

  15. Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sens Rev

    Google Scholar 

  16. Patel HK, Kunpara MJ (2011) Electronic nose sensor response and qualitative review of e-nose sensors. In: 2011 Nirma University international conference on engineering. IEEE, pp. 1–6

    Google Scholar 

  17. Tozlu BH, Okumuş Hİ, Şimşek C. Selecting suitable sensor on building an electronic nose

    Google Scholar 

  18. Banerjee MB, Pradhan S, Roy RB, Tudu B, Das DK, Bandyopadhyay R, Pramanik P (2018) Detection of benzene and volatile aromatic compounds by molecularly imprinted polymer-coated quartz crystal microbalance sensor. IEEE Sens J 19(3):885–892

    Article  Google Scholar 

  19. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106

    Google Scholar 

  20. Berna A (2010) Metal oxide sensors for electronic noses and their application to food analysis. Sensors 10(4):3882–3910

    Article  Google Scholar 

  21. Romain AC, Nicolas J (2010) Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens Actuators, B Chem 146(2):502–506

    Article  Google Scholar 

  22. Wojnowski W, Majchrzak T, Dymerski T, Gębicki J, Namieśnik J (2017) Portable electronic nose based on electrochemical sensors for food quality assessment. Sensors 17(12):2715

    Article  Google Scholar 

  23. Pelosi P, Zhu J, Knoll W (2018) From gas sensors to biomimetic artificial noses. Chemosensors 6(3):32

    Article  Google Scholar 

  24. Gardner JW, Hines EL, Tang HC (1992) Detection of vapours and odours from a multisensor array using pattern-recognition techniques. Part 2. Artificial neural networks. Sens Actuators B: Chem 9(1):9–15

    Google Scholar 

  25. Sayago I, Aleixandre M, Santos JP (2019) Development of tin oxide-based nanosensors for electronic nose environmental applications. Biosensors 9(1):21

    Article  Google Scholar 

  26. Fu J, Li G, Qin Y, Freeman WJ (2007) A pattern recognition method for electronic noses based on an olfactory neural network. Sens Actuators, B Chem 125(2):489–497

    Article  Google Scholar 

  27. Behera SK, Sangita S, Rath AK, Sethy PK (2019) Automatic classification of mango using statistical feature and SVM. In: Advances in computer, communication and control. Springer, Singapore, pp 469–475

    Google Scholar 

  28. Goudjil M, Koudil M, Bedda M, Ghoggali N (2018) A novel active learning method using SVM for text classification. Int J Autom Comput 15(3):290–298

    Article  Google Scholar 

  29. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  30. Mokeev AV, Mokeev VV (2015) Pattern recognition by means of linear discriminant analysis and the principal components analysis. Pattern Recognit Image Anal 25(4):685–691

    Article  Google Scholar 

  31. Rudas T (1984) Stepwise discriminant analysis procedure for categorical variable. In: Compstat 1984. Physica, Heidelberg, pp 389–394

    Google Scholar 

  32. Uyanık GK, Güler N (2013) A study on multiple linear regression analysis. Procedia Soc Behav Sci 106:234–240

    Article  Google Scholar 

  33. Tan J, Kerr WL (2018) Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS). J Sci Food Agric 98(10):3851–3859

    Article  Google Scholar 

  34. Qi PF, Meng QH, Zeng M (2017) A CNN-based simplified data processing method for electronic noses. In: 2017 ISOCS/IEEE international symposium on olfaction and electronic nose (ISOEN). IEEE, pp 1–3

    Google Scholar 

  35. Llobet E, Hines EL, Gardner JW, Franco S (1999) Non-destructive banana ripeness determination using a neural network-based electronic nose. Meas Sci Technol 10(6):538

    Article  Google Scholar 

  36. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Trans Autom Control 42(10):1482–1484

    Article  Google Scholar 

  37. Baietto M, Wilson AD (2015) Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors 15(1):899–931

    Article  Google Scholar 

  38. Chilo J, Pelegri-Sebastia J, Cupane M, Sogorb T (2016) E-nose application to food industry production. IEEE Instrum Meas Mag 19(1):27–33

    Article  Google Scholar 

  39. Siadat M, Losson E, Ghasemi-Varnamkhasti M, Mohtasebi SS (2014) Application of electronic nose to beer recognition using supervised artificial neural networks. In: 2014 International conference on control, decision and information technologies (CoDIT). IEEE, pp 640–645

    Google Scholar 

  40. Dhanekar S (2020) Smart and intelligent E‐nose for sensitive and selective chemical sensing applications. Smart Sens Environ Med Appl 149–171

    Google Scholar 

  41. Wilson AD (2013) Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13(2):2295–2348

    Article  Google Scholar 

  42. Thaler ER, Kennedy DW, Hanson CW (2001) Medical applications of electronic nose technology: review of current status. Am J Rhinol 15(5):291–295

    Article  Google Scholar 

  43. Capelli L, Sironi S, Del Rosso R (2014) Electronic noses for environmental monitoring applications. Sensors 14(11):19979–20007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalidindi Lakshmi Divya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Divya, K.L., Baskar, V.V. (2022). A Comprehensive Study on Fruit Odour Detection and Classification Techniques Using eNose. In: Chakravarthy, V.V.S.S.S., Flores-Fuentes, W., Bhateja, V., Biswal, B. (eds) Advances in Micro-Electronics, Embedded Systems and IoT. Lecture Notes in Electrical Engineering, vol 838. Springer, Singapore. https://doi.org/10.1007/978-981-16-8550-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8550-7_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8549-1

  • Online ISBN: 978-981-16-8550-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics