Skip to main content

Advanced High-Temperature Structural Materials in Petrochemical, Metallurgical, Power, and Aerospace Sectors—An Overview

  • Chapter
  • First Online:
Future Landscape of Structural Materials in India

Abstract

Metallic materials for structural applications are designed to withstand mechanical forces of high and varying amplitude in static or dynamic loading conditions, prevent undue deformation or premature failure, and ensure projected life and reliability of a component even in extreme and unanticipated conditions. Amplitude, magnitude, direction, duration, rate, and type of load determine the complexity and extent of the damage. The challenge is even higher if the component is exposed to temperatures above the equi-cohesive limit where the structural component is likely to undergo accelerated damages due to creep, oxidation, and allied degradation owing to the combined effect of mechanical stress and high temperature. Besides usual strategies of strengthening by precipitation, dispersion, alloying or solid solution, grain boundary, texturing, or phase transformation, mostly designed to arrest dislocation-mediated deformation assuming grain or phase boundaries, are stronger than the crystallite interior, a different strengthening approach based on non-metallic insoluble dispersoids, intermetallic phases or compound, and ceramic phases either as the matrix or reinforcement in a composite or even, hybrid materials is often considered prudent at elevated and/or dynamic loading conditions. Both intermetallic and ceramic phases as a monolith or dispersion are attractive due to their higher melting point, high specific strength, absence of or limited threats from creep, and/or fatigue-related damages at elevated temperatures. However, a universal strategy to develop materials for high-temperature structural applications is yet to emerge as service conditions and related threats vary from one application domain to another with varying degrees of challenges from load, oxidation, corrosion, erosion, creep, thermal fatigue, and shock, all at elevated temperature. In this contribution, we propose to present a critical review of characteristics of materials in terms of composition, microstructure, properties, and perceived working conditions for structural applications used in five specific sectors, namely petrochemical, metallurgical, power generation, aviation, and space. The limitations of currently used structural materials and alternatives available or explored are discussed in a comprehensive manner. The recent progress in developing different structural materials for high-temperature applications is briefly presented. The scope of future development in these sectors is highlighted with a critical assessment. For the successful development of newer materials, a concerted effort encompassing all major engineering aspects and an integrated system engineering approach is solicited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Top 10 Engineering Advancements Of The 21st Century, MEM (2017). https://www.memuk.org/construction-infrastructure/civil-structural-engineering/top-10-engineering-advancements-21st-century-38343. Accessed 13 Mar 2021

  2. R. Mithe, The importance of manufacturing in India, ManufacturingToday (2020). https://www.manufacturingtodayindia.com/7349-the-importance-of-manufacturing-in-india. Accessed 13 Mar 2021

  3. N. Haraguchi, The importance of manufacturing in economic development: Has this changed? (2016)

    Google Scholar 

  4. K. Jayaraman, Enabling Manufacturing Sector Key to a Self-Reliant India, TheWeek. (n.d.) (2020). https://www.theweek.in/news/biz-tech/2020/08/26/enabling-manufacturing-sector-key-to-a-self-reliant-india.html. Accessed 13 Mar 2021

  5. W.D. Callister, D.G. Tethwisch, R. Balasubramaniam, Callister’s Materials Science and Engineering (Wiley, Second, 2013)

    Google Scholar 

  6. MatWeb, Your Source for Materials Information (2021). https://matweb.com/. Accessed 18 Mar 2021

  7. D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals And Alloys, 3rd edn. (CRC Press, Taylor & Francis Group, 2009)

    Google Scholar 

  8. R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, 4th edn. (Cengage Learning India Private Limited, Delhi, 2014)

    Google Scholar 

  9. Schematic process flow diagram of the processes used in a typical oil refinery (n.d.). https://commons.wikimedia.org/wiki/File:RefineryFlow.svg. Accessed 16 Mar 2021

  10. Comittee of Stainless Steel Producers, The role of stainless steels in petroleum refining, pp. 1–57 (2015). https://www.nickelinstitute.org/en/TechnicalLiterature/AISI/9021_RoleofStainlessSteelinPetroleumRefining.aspx

  11. L.T. Popoola, A.S. Grema, G.K. Latinwo, B.B. Gutti, A. Saheed, Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 4(35), 1–15 (2013)

    Google Scholar 

  12. Y. He, Z. Ning, W. Gao, High temperature corrosion problems in the petrochemical industry, in Developments in High Temperature Corrosion and Protection of Materials, eds. by W. Gao, Z. Li (Woodhead Publishing Limited, 2008), pp. 495–520. https://doi.org/10.1533/9781845694258.3.495.

  13. W. Oxford, R. Foss, Corrosion of oil and gas well equipment, in 87th ed., (1958)

    Google Scholar 

  14. D. Brondel, R. Edwards, A. Hayman, D. Hill, S. Mehta, T. Semerad, Corrosion in the oil industry. Oilfield Rev. (1994)

    Google Scholar 

  15. K. Nalli, Corrosion and its mitigation in the oil and gas industry. An overview PM-Pipeliner Report (2010)

    Google Scholar 

  16. H. Jalkanen, L. Holappa, Converter Steelmaking, in Treatise on Process Metallurgy ed. by S. Seetharaman (Elsevier Ltd., 2014), pp. 223–270. https://doi.org/10.1016/B978-0-08-096988-6.00014-6

  17. Various initiatives taken by Ministry of Steel for capacity building, Press Release (n.d.). https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1654920. Accessed 15 Dec 2020

  18. R. Purgert, J. Phillips, H. Hendrix, J. Shingledecker, J. Tanzosh, Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines-A-USC Component Demonstration Pre-FEED Final Technical Report (2016). https://www.osti.gov/servlets/purl/1332274

  19. R. Purgert, J. Shingledecker, R. Ganta, P.S. Weitzel, J. Sarver, B. Vitalis, M. Gagliano, G. Stanko, P. Tortorelli, Boiler Materials for Ultra Supercritical Coal Power Plants (2015)

    Google Scholar 

  20. NTPC Commissions India’s First Ultra Supercritical 660 MW Unit In Madhya Pradesh, BloombergQuint (n.d.). https://www.bloombergquint.com/business/ntpc-commissions-indias-first-ultra-supercritical-660-mw-unit-in-madhya-pradesh#:~:text=NTPCLtd.hascommissionedIndia’s,state-runfirmsaidFriday. Accessed 14 Dec 2020

    Google Scholar 

  21. Raising the bar on coal plant efficiency Ultra-Supercritical & Advanced Ultra-Supercritical Technology (n.d.). https://www.ge.com/power/steam/steam-power-plants/advanced-ultra-supercritical-usc-ausc. Accessed 14 Dec 2020

  22. Sandvik datasheet, SANICRO® 25 Tube and pipe, seamless (2008)

    Google Scholar 

  23. NIMONIC® alloy 105 (n.d.). www.specialmetals.com

  24. Haynes Internatioal Website, Haynes 282 Alloy: Principal Features(2020). https://www.haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/HAYNES282alloy.aspx

  25. HAYNES® 230® alloy, http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/230-brochure.pdf?sfvrsn=ae7229d4_86 (accessed as on 26.02.2022)

    Google Scholar 

  26. K. Zhang, Y. Zhang, Y. Guan, D. Zhang, Boiler design for ultra-supercritical coal power plants. Woodhead Publishing Limited (2013). https://doi.org/10.1533/9780857097514.1.104

  27. I. Pioro, R. Duffey, Current and future nuclear power reactors and plants (Elsevier Inc., 2018). https://doi.org/10.1016/B978-0-12-814104-5.00004-1

  28. J.P. Dobisesky, Reactor Physics Considerations for Implementing Silicon Carbide Cladding into a PWR Environment, p. 124 (2011)

    Google Scholar 

  29. Ryan Whitwam, Japan removes first nuclear fuel rod from Fukushima Power Plant (2019). https://www.extremetech.com/extreme/289621-japan-removes-first-nuclear-fuel-rod-from-fukushima-power-plant. Accessed 26 Dec 2020

  30. Comparing Fukushima and Chernobyl (n.d.). https://www.nei.org/resources/fact-sheets/comparing-fukushima-and-chernobyl#:~:text=TheaccidentatFukushimaoccurred,releasedaftertheFukushimaaccident. Aaccessed 14 Dec 2020

  31. T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. J. Nucl. Mater. 427, 396–400 (2012). https://doi.org/10.1016/j.jnucmat.2012.05.007

  32. L. Hallstadius, S. Johnson, E. Lahoda, Cladding for high performance fuel. Prog. Nucl. Energy. 57, 71–76 (2012). https://doi.org/10.1016/j.pnucene.2011.10.008

  33. Y. Dai, V. Krsjak, V. Kuksenko, R. Schäublin, Microstructural changes of ferritic/martensitic steels after irradiation in spallation target environments. J. Nucl. Mater. 511, 508–522 (2018). https://doi.org/10.1016/j.jnucmat.2018.09.028

  34. P. Yvon, F. Carré, Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217–222 (2009). https://doi.org/10.1016/j.jnucmat.2008.11.026

  35. A. Certain, S. Kuchibhatla, V. Shutthanandan, D.T. Hoelzer, T.R. Allen, Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J. Nucl. Mater. 434, 311–321 (2013). https://doi.org/10.1016/j.jnucmat.2012.11.021

  36. T. Koyanagi, Y. Katoh, T. Nozawa, L.L. Snead, S. Kondo, C.H. Henager, M. Ferraris, T. Hinoki, Q. Huang, Recent progress in the development of SiC composites for nuclear fusion applications. J. Nucl. Mater. 511, 544–555 (2018). https://doi.org/10.1016/j.jnucmat.2018.06.017

  37. S.K. Karak, C.S. Vishnu, Z. Witczak, W. Lojkowski, J. Dutta Majumdar, I. Manna, Studies on wear behavior of nano-Y2O3 dispersed ferritic steel developed by mechanical alloying and hot isostatic pressing. Wear. 270, 5–11 (2010). https://doi.org/10.1016/j.wear.2010.08.021

  38. S.K. Karak, T. Chudoba, Z. Witczak, W. Lojkowski, I. Manna, Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing. Mater. Sci. Eng. A. 528, 7475–7483 (2011). https://doi.org/10.1016/j.msea.2011.06.039

  39. S.K. Karak, J. Dutta Majumdar, Z. Witczak, W. Lojkowski, Ł. Ciupiński, K.J. Kurzydłowski, I. Manna, Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 2884–2894 (2013). https://doi.org/10.1007/s11661-013-1627-9

  40. T. Okura, New materials for aircraft engines (2015). https://doi.org/10.4271/430133

  41. A. Nowotnik, Nickel-Based Superalloys. Ref. Modul. Mater. Sci. Mater. Eng. 1–7 (2016). https://doi.org/10.1016/b978-0-12-803581-8.02574-1

  42. R.E. Schafrik, R. Sprague, Gas turbine materials. Adv. Mater. Process. 162, 41–46 (2004). https://doi.org/10.1016/0016-0032(58)90740-3

  43. T.M. Pollock, Alloy design for aircraft engines. Nat. Mater. 15, 809–815 (2016). https://doi.org/10.1038/nmat4709

  44. P. Spriet, CMC Applications to Gas Turbines. Ceram. Matrix Compos. Mater. Model. Technol. 9781118231, 591–608 (2014). https://doi.org/10.1002/9781118832998.ch21

  45. Graduate to Production: Metal 3D Printing with Enhanced Post Processing and Quality Control (2020). https://www.ge.com/additive/blog/graduate-production-metal-3d-printing-enhanced-post-processing-and-quality-control. Accessed 12 Sept 2020

  46. New manufacturing milestone: 30,000 additive fuel nozzles (2018). https://www.ge.com/additive/stories/new-manufacturing-milestone-30000-additive-fuel-nozzles. Accessed 12 Sept 2020

  47. O. Uyanna, H. Najafi, Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronaut. 176, 341–356 (2020). https://doi.org/10.1016/j.actaastro.2020.06.047

  48. Adrian P. Mouritz, Metal matrix, fibre–metal and ceramic matrix composites for aerospace applications, in Introduction to Aerospace Structures and Materials ed. by A.P. Mouritz (Woodhead Publishing Limited, 2012), pp. 394–410. https://doi.org/10.1533/9780857095152.394

  49. NASA Technology Roadmaps 2015, TA 14: Thermal management systems

    Google Scholar 

  50. M. Taneike, F. Abe, K. Sawada, Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature 424, 294–296 (2003). https://doi.org/10.1038/nature01740

  51. K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels. Mater. Sci. Eng. R Reports. 65, 39–104 (2009). https://doi.org/10.1016/j.mser.2009.03.001

  52. W.P. Limited, Steels for aircraft structures. Introd. Aerosp. Mater. 232–250 (2012). https://doi.org/10.1533/9780857095152.232

  53. High-temperature characteristics of stainless steels, Am. Iron Steel Inst. (n.d.). https://www.nickelinstitute.org/media/1699/high_temperaturecharacteristicsofstainlesssteel_9004_.pdf. Accessed 1 Aug 2020

  54. L. Vehovar, M. Tandler, Stainless steel containers for the storage of low and medium level radioactive waste. Nucl. Eng. Des. 206, 21–33 (2001). https://doi.org/10.1016/S0029-5493(00)00443-X

  55. P. Sengupta, I. Manna, Advanced High-Temperature Structural Materials for Aerospace and Power Sectors: A Critical Review. Trans. Indian Inst. Met. 72, 2043–2059 (2019). https://doi.org/10.1007/s12666-019-01598-z

  56. J Veternikobva, S Kilpeläinen, V Slugeň, F Tuomisto, Oxide Dispersion Strengthened Steels: a comparison of microstructure features of some commercial steels with applying of doppler broadening spectroscopy. Technical Report, p 1

    Google Scholar 

  57. D.T. Hoelzer, J. Bentley, M.K. Miller, M.K. Sokolov, T.S. Byun, M. Li, Development of high-strength ODS steels for nuclear energy applications. ODS Mater. Work. 1–28 (2010)

    Google Scholar 

  58. C. Cabet, F. Dalle, E. Gaganidze, J. Henry, H. Tanigawa, Ferritic-martensitic steels for fission and fusion applications. J. Nucl. Mater. 523, 510–537 (2019). https://doi.org/10.1016/j.jnucmat.2019.05.058

  59. V.R.B. Vasilyev, D. Zverev, V. Yershov, S. Kalyakin, V. Poplavskiy, O. Sarayev, Development of fast sodium reactor technology in the Russian Federation, in Proceedings of International Conference Fast Reactors and Relators Fuel Cycles Safe. Technologies and Sustainable Scenarios (FR13, Paris, France, 2013), p. 2

    Google Scholar 

  60. J. Yoo, Korean SFR development program and technical activity for improving economical competitiveness, in Technical Meeting Fast Reactors and Related Fuel Cycles Facil. with Improving Character (IAEA, Vienna, Austria, 2013)

    Google Scholar 

  61. L. Tan, Y. Katoh, A.A.F. Tavassoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, Q. Huang, Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service. J. Nucl. Mater. 479, 515–523 (2016). https://doi.org/10.1016/j.jnucmat.2016.07.054

  62. R.L. Klueh, D.S. Gelles, S. Jitsukawa, A. Kimura, G.R. Odette, B. Van der Schaaf, M. Victoria, Ferritic/martensitic steels—overview of recent results. J. Nucl. Mater. 307–311, 455–465 (2002). https://doi.org/10.1016/S0022-3115(02)01082-6

  63. R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 371, 37–52 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.005

  64. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys. J. Nucl. Mater. 341, 103–114 (2005). https://doi.org/10.1016/j.jnucmat.2005.01.017

  65. M.B. Toloczko, F.A. Garner, C.R. Eiholzer, Irradiation creep and swelling of the US fusion heats of HT9 and 9Cr-1Mo to 208 dpa at ~400 °C. J. Nucl. Mater. 212–215, 604–607 (1994). https://doi.org/10.1016/0022-3115(94)90131-7

  66. V. Bryk, O. Borodin, A. Kalchenko, V. Voyevodin, V. Ageev, A. Nikitina, V. Novikov, V. Inozemtsev, A. Zeman, F. Garner, Ion issues on irradiation behavior of structural materials at high doses and gas concentrations, in Proceedings of 11th International Topical Meeting Introduction to Aerospace Structures and Materials AccApp (Bruges, Belgium, 2013)

    Google Scholar 

  67. G.R. Odette, D. Frey, Development of mechanical property correlation methodology for fusion environments. J. Nucl. Mater. 85&86, 817–822 (1979)

    Google Scholar 

  68. X. Wang, Q. Yan, G.S. Was, L. Wang, Void swelling in ferritic-martensitic steels under high dose ion irradiation: exploring possible contributions to swelling resistance. Scr. Mater. 112, 9–14 (2016). https://doi.org/10.1016/j.scriptamat.2015.08.032

  69. R.L. Klueh, Analysis of swelling behaviour of ferritic/martensitic steels. Philos. Mag. 98, 2618–2636 (2018). https://doi.org/10.1080/14786435.2018.1497307

  70. Z. Xiong, I. Timokhina, E. Pereloma, Clustering, nano-scale precipitation and strengthening of steels. Prog. Mater. Sci. (2020) 100764. https://doi.org/10.1016/j.pmatsci.2020.100764

  71. Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, C.T. Liu, Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Mater. Today 20, 142–154 (2017). https://doi.org/10.1016/j.mattod.2016.07.002

  72. Z.K. Teng, M.K. Miller, G. Ghosh, C.T. Liu, S. Huang, K.F. Russell, M.E. Fine, P.K. Liaw, Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography. Scr. Mater. 63, 61–64 (2010). https://doi.org/10.1016/j.scriptamat.2010.03.013

  73. S. Huang, Y. Gao, K. An, L. Zheng, W. Wu, Z. Teng, P.K. Liaw, Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures. Acta Mater. 83, 137–148 (2015). https://doi.org/10.1016/j.actamat.2014.09.053

  74. A.P. Mouritz, Titanium alloys for aerospace structures and engines, in Introduction to Aerospace Structures and Materials, ed. by A.P. Mouritz (Woodhead Publishing Limited, 2012), pp. 202–223. https://doi.org/10.1533/9780857095152.202

  75. J. Dai, J. Zhu, C. Chen, F. Weng, High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review. J. Alloys Compd. 685, 784–798 (2016). https://doi.org/10.1016/j.jallcom.2016.06.212

  76. J.C. Williams, E.A. Starke, Progress in structural materials for aerospace systems. Acta Mater. 51, 5775–5799 (2003). https://doi.org/10.1016/j.actamat.2003.08.023

  77. S. Mandal, V.V. Das, M. Debata, A. Panigrahi, P. Sengupta, A. Rajendran, D.K. Pattanayak, S. Basu, Study of pore morphology, microstructure, and cell adhesion behaviour in porous Ti–6Al–4V scaffolds. Emergent Mater. 2, 453–462 (2019). https://doi.org/10.1007/s42247-019-00055-3

  78. B. Dutta, F.H. Sam Froes, The Additive Manufacturing (AM) of Titanium Alloys (Elsevier Inc., 2015). https://doi.org/10.1016/B978-0-12-800054-0.00024-1

  79. S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460–464 (2017). https://doi.org/10.1038/nature22032

  80. T. Simm, L. Sun, S. McAdam, P. Hill, M. Rawson, K. Perkins, The influence of lath, block and Prior Austenite Grain (PAG) size on the tensile, creep and fatigue properties of novel maraging steel. Materials (Basel). 10 (2017). https://doi.org/10.3390/ma10070730

  81. T.H. Simm, L. Sun, D.R. Galvin, E.P. Gilbert, D. Alba Venero, Y. Li, T.L. Martin, P.A.J. Bagot, M.P. Moody, P. Hill, H.K.D.H. Bhadeshia, S. Birosca, M.J. Rawson, K.M. Perkins, A SANS and APT study of precipitate evolution and strengthening in a maraging steel. Mater. Sci. Eng. A. 702, 414–424 (2017). https://doi.org/10.1016/j.msea.2017.07.013

  82. L. Sun, T.H. Simm, T.L. Martin, S. McAdam, D.R. Galvin, K.M. Perkins, P.A.J. Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, H.K.D.H. Bhadeshia, A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates. Acta Mater. 149, 285–301 (2018). https://doi.org/10.1016/j.actamat.2018.02.044

  83. S.C. Deevi, V.K. Sikka, Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics 4, 357–375 (1996). https://doi.org/10.1016/0966-9795(95)00056-9

  84. V.K. Sikka, J.T. Mavity, K. Anderson, Processing of nickel aluminides and their industrial applications. Mater. Sci. Eng. A. 153, 712–721 (1992). https://doi.org/10.1016/b978-1-85166-822-9.50113-8

  85. F.H. Froes, Structural intermetallics, in JOM, eds. by R. Prasad, N.E. Wanhill (Springer, Berlin, 1989), pp. 6–7. https://doi.org/10.1007/BF03220322

  86. D.G. Morris, M.A. Muñoz-Morris, Development of creep-resistant iron aluminides. Mater. Sci. Eng. A. 462, 45–52 (2007). https://doi.org/10.1016/j.msea.2005.10.083

  87. G. Muralidharan, C.A. Blue, V.K. Sikka, N.B. Dahotre, Surface modification of 4340 steel with iron aluminides using high-energy-density processes. Mater. Sci. Technol. 357–366 (2004)

    Google Scholar 

  88. K. Bochenek, M. Basista, Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog. Aerosp. Sci. 79, 136–146 (2015). https://doi.org/10.1016/j.paerosci.2015.09.003

  89. R. Tewari, N.K. Sarkar, D. Harish, B. Vishwanadh, G.K. Dey, S. Banerjee, Intermetallics and Alloys for High Temperature Applications, in Mater Under Extreme Conditions (Elsevier Inc., 2017), pp. 293–335. https://doi.org/10.1016/B978-0-12-801300-7.00009-7

  90. H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 15, 191–215 (2013). https://doi.org/10.1002/adem.201200231

  91. K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques. Prog. Aerosp. Sci. 55, 1–16 (2012). https://doi.org/10.1016/j.paerosci.2012.04.001

  92. F.D. Fischer, T. Waitz, C. Scheu, L. Cha, G. Dehm, T. Antretter, H. Clemens, Study of nanometer-scaled lamellar microstructure in a Ti-45Al-7.5Nb alloy—experiments and modelling. Intermetallics 18, 509–517 (2010). https://doi.org/10.1016/j.intermet.2009.09.012

  93. M. Yamaguchi, H. Inui, K. Ito, High-temperature structural intermetallics. Acta Mater. 48, 307–322 (2000). https://doi.org/10.1016/S1359-6454(99)00301-8

  94. B.S.J. Kang, R. Cisloiu, Evaluation of fracture behavior of iron aluminides. Theor. Appl. Fract. Mech. 45, 25–40 (2006). https://doi.org/10.1016/j.tafmec.2005.11.008

  95. R. Balasubramaniam, Hydrogen in iron aluminides 332, 506–510 (2002)

    Google Scholar 

  96. D.G. Morris, M.A. Morris-Muñoz, The influence of microstructure on the ductility of iron aluminides. Intermetallics 7, 1121–1129 (1999). https://doi.org/10.1016/S0966-9795(99)00038-2

  97. K.R. Luer, High-temperature sulfidation of Fe3Al thermal spray coatings at 600 °C. Corrosion 56, 189–198 (2000). https://doi.org/10.5006/1.3280535

  98. M. Perrut, P. Caron, M. Thomas, A. Couret, High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys. Comptes Rendus Phys. 19, 657–671 (2018). https://doi.org/10.1016/j.crhy.2018.10.002

  99. J. Chen, Q. Huo, J. Chen, Y. Wu, Q. Li, C. Xiao, X. Hui, Tailoring the creep properties of second-generation Ni-based single crystal superalloys by composition optimization of Mo, W and Ti. Mater. Sci. Eng. A. 799, 140163 (2021). https://doi.org/10.1016/j.msea.2020.140163

  100. C. Panwisawas, Y.T. Tang, R.C. Reed, Metal 3D printing as a disruptive technology for superalloys. Nat. Commun. 11, 1–4 (2020). https://doi.org/10.1038/s41467-020-16188-7

  101. J.H. Perepezko, Surface engineering of Mo-base alloys for elevated-temperature environmental resistance. Annu. Rev. Mater. Res. 45, 519–542 (2015). https://doi.org/10.1146/annurev-matsci-070214-020959

  102. C. Chen, Q. Wang, C. Dong, Y. Zhang, H. Dong, Composition rules of Ni-base single crystal superalloys and its influence on creep properties via a cluster formula approach. Sci. Rep. 10, 21621 (2020). https://doi.org/10.1038/s41598-020-78690-8

  103. A. Sato, H. Harada, A.C. Yeh, K. Kawagishi, T. Kobayashi, Y. Koizumi, T. Yokokawa, J.X. Zhang, A 5th generation SC superalloy with balanced high temperature properties and processability, in Proceedings of International Symposium on Superalloys (2008), pp. 131–138. https://doi.org/10.7449/2008/superalloys_2008_131_138

  104. Y. Yuan, K. Kawagishi, Y. Koizumi, T. Kobayashi, T. Yokokawa, H. Harada, Creep deformation of a sixth generation Ni-base single crystal superalloy at 800 °C. Mater. Sci. Eng. A. 608, 95–100 (2014). https://doi.org/10.1016/j.msea.2014.04.069

  105. Y. Koizumi, T. Kobayashi, T. Yokokawa, J. Zhang, M. Osawa, H. Harada, Y. Aoki, M. Arai, Development of next-generation Ni-base single crystal superalloys, in Proceedings of International Symposium on Superalloys (2004), pp. 35–43. https://doi.org/10.7449/2004/superalloys_2004_35_43

  106. X. Wu, S.K. Makineni, C.H. Liebscher, G. Dehm, J. Rezaei Mianroodi, P. Shanthraj, B. Svendsen, D. Bürger, G. Eggeler, D. Raabe, B. Gault, Unveiling the Re effect in Ni-based single crystal superalloys. Nat. Commun. 11, 1–13 (2020). https://doi.org/10.1038/s41467-019-14062-9

  107. B.P. Bewlay, M.R. Jackson, P.R. Subramanian, J.J. Lewandowski, Very high-temperature Nb-silicide-based composites. Proc. Int. Symp. Niobium High Temp. Appl. 34, 51–61 (2004)

    Google Scholar 

  108. J.A. Lemberg, R.O. Ritchie, Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv. Mater. 24, 3445–3480 (2012). https://doi.org/10.1002/adma.201200764

  109. K. Pan, Y. Yang, S. Wei, H. Wu, Z. Dong, Y. Wu, S. Wang, L. Zhang, J. Lin, X. Mao, Oxidation behavior of Mo–Si–B alloys at medium-to-high temperatures. J. Mater. Sci. Technol. 60, 113–127 (2021). https://doi.org/10.1016/j.jmst.2020.06.004

  110. J. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno, S. Hanada, Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34, 85–94 (2003). https://doi.org/10.1007/s11661-003-0210-1.

  111. S.K. Makineni, A. Sharma, P. Pandey, K. Chattopadhyay, An Overview on Co-Base alloys for high temperature applications, in Reference Module in Materials Science and Materials Engineering (Elsevier Ltd., 2020), pp. 1–14. https://doi.org/10.1016/b978-0-12-803581-8.12094-6

  112. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, D.N. Seidman, Microstructural and creep properties of boron- and zirconium-containing cobalt-based superalloys. Mater. Sci. Eng. A. 682, 260–269 (2017). https://doi.org/10.1016/j.msea.2016.10.124

  113. G. Feng, H. Li, S.S. Li, J.B. Sha, Effect of Mo additions on microstructure and tensile behavior of a Co–Al–W–Ta–B alloy at room temperature. Scr. Mater. 67, 499–502 (2012). https://doi.org/10.1016/j.scriptamat.2012.06.013

  114. L. Li, C. Wang, Y. Chen, S. Yang, M. Yang, J. Zhang, Y. Lu, J. Han, X. Liu, Effect of Re on microstructure and mechanical properties of γ/γʹ Co-Ti-based superalloys. Intermetallics 115, 106612 (2019). https://doi.org/10.1016/j.intermet.2019.106612

  115. P. Liu, H. Huang, S. Antonov, C. Wen, D. Xue, H. Chen, L. Li, Q. Feng, T. Omori, Y. Su, Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization. NPJ Comput. Mater. 6, 1–9 (2020). https://doi.org/10.1038/s41524-020-0334-5

  116. S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee, K. Chattopadhyay, A new class of high strength high temperature Cobalt based γ-γ′ Co–Mo–Al alloys stabilized with Ta addition. Acta Mater. 97, 29–40 (2015). https://doi.org/10.1016/j.actamat.2015.06.034

  117. S.K. Makineni, B. Nithin, K. Chattopadhyay, A new tungsten-free γ-γ’ Co–Al–Mo–Nb-based superalloy. Scr. Mater. 98, 36–39 (2015). https://doi.org/10.1016/j.scriptamat.2014.11.009

  118. S.K. Makineni, B. Nithin, K. Chattopadhyay, Synthesis of a new tungsten-free γ-γ′ Cobalt-based superalloy by tuning alloying additions. Acta Mater. 85, 85–94 (2015). https://doi.org/10.1016/j.actamat.2014.11.016

  119. P. Pandey, A.K. Sawant, B. Nithin, Z. Peng, S.K. Makineni, B. Gault, K. Chattopadhyay, On the effect of Re addition on microstructural evolution of a CoNi-based superalloy. Acta Mater. 168, 37–51 (2019). https://doi.org/10.1016/j.actamat.2019.01.046

  120. Y. Chen, C. Wang, J. Ruan, T. Omori, R. Kainuma, K. Ishida, X. Liu, High-strength Co–Al–V-base superalloys strengthened by γ′-Co3(Al, V) with high solvus temperature. Acta Mater. 170, 62–74 (2019). https://doi.org/10.1016/j.actamat.2019.03.013

  121. Y. Chen, C. Wang, J. Ruan, S. Yang, T. Omori, R. Kainuma, K. Ishida, J. Han, Y. Lu, X. Liu, Development of low-density γ/γ′ Co–Al–Ta-based superalloys with high solvus temperature. Acta Mater. 188, 652–664 (2020). https://doi.org/10.1016/j.actamat.2020.02.049

  122. F.L. Reyes Tirado, S. Taylor, D.C. Dunand, Effect of Al, Ti and Cr additions on the γ-γ’ microstructure of W-free Co-Ta-V-Based superalloys. Acta Mater. 172, 44–54 (2019). https://doi.org/10.1016/j.actamat.2019.04.031

  123. C.L. Briant, The use of refractory metals as high temperature structural materials. J. Eng. Mater. Technol. Trans. ASME. 122, 338–341 (2000). https://doi.org/10.1115/1.482806

  124. Periodic Table (n.d.). http://periodictable.com/. Accessed 5 Nov 2020.

  125. M. Debata, T.S. Acharya, P. Sengupta, P.P. Acharya, S. Bajpai, K. Jayasankar, Effect of high energy ball milling on structure and properties of 95W-3.5Ni-1.5Fe heavy alloys. Int. J. Refract. Met. Hard Mater. 69, 170–179 (2017). https://doi.org/10.1016/j.ijrmhm.2017.08.007.

  126. P. Sengupta, A. Panigrahi, B. Indoria, P. Meher, T.S. Acharya, S. Basu, M. Debata, Substitution of Ni with NiB prevents shape distortion of liquid phase sintered 90W–6Ni–2Fe–2Co heavy alloys. J. Alloys Compd. 840 (2020). https://doi.org/10.1016/j.jallcom.2020.155785

  127. P. Sengupta, M. Debata, Effect of partial and full substitution of Ni with NiB on densification, structure and properties of 90W–6Ni–2Fe–2Co heavy alloys. J. Alloys Compd. 774, 145–152 (2019). https://doi.org/10.1016/j.jallcom.2018.09.368

  128. A. Bose, G. Jerman, R.M. German, Rhenium alloying of tungsten heavy alloys. Powder Metall. Int. 21, 9–13 (1989)

    Google Scholar 

  129. L.L. Snead, D.T. Hoelzer, M. Rieth, A.A.N. Nemith, Chapter 13—Refractory alloys: vanadium, niobium, molybdenum, tungsten, in Structural Alloys for Nuclear Energy Applications (Elsevier Inc., 2019), pp. 585–640. https://doi.org/10.1016/B978-0-12-397046-6.00013-7.

  130. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153–157 (2017). https://doi.org/10.1016/j.intermet.2017.01.007

  131. P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, M.A. Stucke, Advanced intermetallic alloys—beyond gamma titanium aluminides. Mater. Sci. Eng. A. 239–240, 1–13 (1997). https://doi.org/10.1016/s0921-5093(97)00555-8

  132. P. Tsakiropoulos, Alloys for application at ultra-high temperatures: Nb-silicide in situ composites: Challenges, breakthroughs and opportunities. Prog. Mater. Sci. 100714 (2020). https://doi.org/10.1016/j.pmatsci.2020.100714

  133. S. Zhang, X. Guo, Effects of B addition on the microstructure and properties of Nb silicide based ultrahigh temperature alloys. Intermetallics 57, 83–92 (2015). https://doi.org/10.1016/j.intermet.2014.10.007

  134. S. Zhang, X. Guo, Alloying effects on the microstructure and properties of Nb-Si based ultrahigh temperature alloys. Intermetallics 70, 33–44 (2016). https://doi.org/10.1016/j.intermet.2015.12.002

  135. S.Y. Kamata, D. Kanekon, Y. Lu, N. Sekido, K. Maruyama, G. Eggeler, K. Yoshimi, Ultrahigh-temperature tensile creep of TiC-reinforced Mo-Si-B-based alloy. Sci. Rep. 8, 1–14 (2018). https://doi.org/10.1038/s41598-018-28379-w

  136. G. Ouyang, P.K. Ray, S. Thimmaiah, M.J. Kramer, M. Akinc, P. Ritt, J.H. Perepezko, Oxidation resistance of a Mo-W-Si-B alloy at 1000–1300 °C: the effect of a multicomponent Mo-Si-B coating. Appl. Surf. Sci. 470, 289–295 (2019). https://doi.org/10.1016/j.apsusc.2018.11.167

  137. J. Das, B. Roy, N.K. Kumar, R. Mitra, High temperature oxidation response of Al/Ce doped Mo–Si–B composites. Intermetallics 83, 101–109 (2017). https://doi.org/10.1016/j.intermet.2016.12.013

  138. O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, Development and exploration of refractory high entropy alloys—a review. J. Mater. Res. 33, 3092–3128 (2018). https://doi.org/10.1557/jmr.2018.153

  139. N.P. Padture, Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016). https://doi.org/10.1038/nmat4687

  140. S. Ariharan, P. Sengupta, A. Nisar, A. Agnihotri, N. Balaji, S.T. Aruna, K. Balani, Dual-layer oxidation-protective plasma-sprayed SiC-ZrB2/Al2O3-carbon nanotube coating on graphite. J. Therm. Spray Technol. 26, 417–431 (2017). https://doi.org/10.1007/s11666-016-0508-3

  141. J.P. Zhang, Q.G. Fu, J.L. Qu, R.M. Yuan, H.J. Li, Blasting treatment and chemical vapor deposition of SiC nanowires to enhance the thermal shock resistance of SiC coating for carbon/carbon composites in combustion environment. J. Alloys Compd. 666, 77–83 (2016). https://doi.org/10.1016/j.jallcom.2016.01.124

  142. C. Li, K. Li, H. Li, Y. Zhang, H. Ouyang, D. Yao, L. Liu, Microstructure and ablation resistance of carbon/carbon composites with a zirconium carbide rich surface layer. Corros. Sci. 85, 160–166 (2014). https://doi.org/10.1016/j.corsci.2014.04.013

  143. C. Verdon, O. Szwedek, S. Jacques, A. Allemand, Y. Le Petitcorps, Hafnium and silicon carbide multilayer coatings for the protection of carbon composites. Surf. Coatings Technol. 230, 124–129 (2013). https://doi.org/10.1016/j.surfcoat.2013.06.022

  144. H. Jian-Feng, Z. Xie-Rong, L. He-Jun, X. Xin-Bo, H. Min, Al2O3-mullite-SiC-Al4SiC4 multi-composition coating for carbon/carbon composites. Mater. Lett. 58, 2627–2630 (2004). https://doi.org/10.1016/j.matlet.2004.03.046

  145. P. Sengupta, Oxidation of Graphite and Its Protection, M. Tech thesis, Indian Institute of Technology, Kanpur, (2013)

    Google Scholar 

  146. S.Y. Kim, I.S. Han, S.K. Woo, K.S. Lee, D.K. Kim, Wear-mechanical properties of filler-added liquid silicon infiltration C/C-SiC composites. Mater. Des. 44, 107–113 (2013). https://doi.org/10.1016/j.matdes.2012.07.064

  147. Y. Wang, X. Zhu, L. Zhang, L. Cheng, Reaction kinetics and ablation properties of C/C-ZrC composites fabricated by reactive melt infiltration. Ceram. Int. 37, 1277–1283 (2011). https://doi.org/10.1016/j.ceramint.2010.12.002

  148. Y. Tong, S. Bai, K. Chen, A low cost fabrication route for continuous carbon fiber reinforced TiC based ceramic matrix composite. Mater. Sci. Eng. A. 556, 980–983 (2012). https://doi.org/10.1016/j.msea.2012.07.085

  149. Y. Cai, S. Fan, X. Yin, L. Zhang, L. Cheng, Y. Wang, Microstructures and mechanical properties of three-dimensional ceramic filler modified carbon/carbon composites. Ceram. Int. 40, 399–408 (2014). https://doi.org/10.1016/j.ceramint.2013.06.015

  150. C. Hu, S. Pang, S. Tang, Z. Yang, S. Wang, H.M. Cheng, Long-term oxidation behavior of carbon/carbon composites with a SiC/B4C-B2O3-SiO2–Al2O3 coating at low and medium temperatures. Corros. Sci. 94, 452–458 (2015). https://doi.org/10.1016/j.corsci.2015.02.026

  151. Q. Gu, F. Zhao, X. Liu, Q. Jia, Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates. Ceram. Int. 45, 12093–12100 (2019). https://doi.org/10.1016/j.ceramint.2019.03.107

  152. B. Long, G. Xu, A. Buhr, S. Jin, H. Harmuth, Fracture behaviour and microstructure of refractory materials for steel ladle purging plugs in the system Al2O3–MgO–CaO. Ceram. Int. 43, 9679–9685 (2017). https://doi.org/10.1016/j.ceramint.2017.04.141

  153. M. Mohammadihooyeh, E. Karamian, R. Emadi, Effect of magnesium-aluminate spinel nano-particles on microstructure and properties behaviors of doloma-containing refractories. Ceram. Int. 46, 1662–1667 (2020). https://doi.org/10.1016/j.ceramint.2019.09.138

  154. M. Musmeci, N.M. Rendtorff, L. Musante, L. Martorello, P. Galliano, E.F. Aglietti, Characterization of MgO-based tundish working lining materials, microstructure and properties. Ceram. Int. 40, 14091–14098 (2014). https://doi.org/10.1016/j.ceramint.2014.05.138

  155. V. Muñoz, A.G. Tomba Martinez, Thermomechanical behaviour of Al2O3-MgO-C refractories under non-oxidizing atmosphere. Ceram. Int. 41, 3438–3448 (2015). https://doi.org/10.1016/j.ceramint.2014.10.146

  156. Y. Lou Xin, H.F. Yin, Y. Tang, Q.F. Wan, K. Gao, H.D. Yuan, Z.W. Wang, Formation mechanism and characterization of gradient density in corundum–spinel refractory. Ceram. Int. 45, 8023–8026 (2019). https://doi.org/10.1016/j.ceramint.2018.12.199

  157. E.Y. Sako, M.A.L. Braulio, V.C. Pandolfelli, How effective is the addition of nanoscaled particles to alumina-magnesia refractory castables? Ceram. Int. 38, 5157–5164 (2012). https://doi.org/10.1016/j.ceramint.2012.03.021

  158. Y. Luo, H. Gu, M. Zhang, A. Huang, H. Li, C. Yu, T. Li, P. Yan, Research on thermal shock resistance of porous refractory material by strain-life fatigue approach. Ceram. Int. 0–1 (2020). https://doi.org/10.1016/j.ceramint.2020.03.015

  159. S.M. Justus, S. Nascimento Silva, F. Vernilli, A. Mazine, R.G. Toledo, R.M. Andrade, O.R. Marques, E. Longo, J.B. Baldo, J.A. Varela, Post mortem study of Al2O3/SiC/C/MgAl2O4 ceramic lining used in torpedo cars, Ceram. Int. 31, 897–904 (2005). https://doi.org/10.1016/j.ceramint.2004.09.016

  160. A.P. Luz, D.O. Vivaldini, F. López, P.O.R.C. Brant, V.C. Pandolfelli, Recycling MgO-C refractories and dolomite fines as slag foaming conditioners: experimental and thermodynamic evaluations. Ceram. Int. 39, 8079–8085 (2013). https://doi.org/10.1016/j.ceramint.2013.03.080

  161. M.F. Santos, M.H. Moreira, M.G.G. Campos, P.I.B.G.B. Pelissari, R.A. Angélico, E.Y. Sako, S. Sinnema, V.C. Pandolfelli, Enhanced numerical tool to evaluate steel ladle thermal losses. Ceram. Int. 44, 12831–12840 (2018). https://doi.org/10.1016/j.ceramint.2018.04.092.

  162. B. Han, C. Ke, Y. Wei, W. Yan, C. Wang, F. Chen, N. Li, Degradation of MgO–C refractories corroded by SiO2–Fe2O3–V2O5–TiO2–MnO–MgO slag. Ceram. Int. 41, 10966–10973 (2015). https://doi.org/10.1016/j.ceramint.2015.05.040

  163. Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Radiation effects in SiC for nuclear structural applications. Curr. Opin. Solid State Mater. Sci. 16, 143–152 (2012). https://doi.org/10.1016/j.cossms.2012.03.005

  164. L.L. Snead, T.D. Burchell, A.L. Qualls, Strength of neutron-irradiated high-quality 3D carbon fiber composite. J. Nucl. Mater. 321, 165–169 (2003). https://doi.org/10.1016/S0022-3115(03)00246-0

  165. L.L. Snead, T.D. Burchell, Y. Katoh, Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature. J. Nucl. Mater. 381, 55–61 (2008). https://doi.org/10.1016/j.jnucmat.2008.07.033

  166. C. Sauder, Ceramic matrix composites: nuclear applications. Ceram. Matrix Compos. Mater. Model. Technol. 609–646 (2015). https://doi.org/10.1002/9781118832998

  167. L. El-Guebaly, the ARIES team, overview of ARIES nuclear assessments: neutronics, shielding, and activation. Prog. Nucl. Sci. Technol. 4, 118–121 (2014). https://doi.org/10.15669/pnst.4.118

  168. L.A. El-Guebaly, P. Wilson, D. Henderson, M. Sawan, G. Sviatoslavsky, T. Tautges, R. Slaybaugh, B. Kiedrowski, A. Ibrahim, C. Martin, Overview of ARIES-CS in-vessel components: integration of nuclear, economic, and safety constraints in compact stellarator design (2007), pp. 1–8. https://inis.iaea.org/search/search.aspx?orig_q=RN:42024723

  169. L. Laurent, Improvement of the Tokamak Concept, vol. 6 (n.d.), pp. 1–14

    Google Scholar 

  170. http://www.iterbelgium.be/en/tokamak-concept, The “tokamak” concept

  171. D.A. Stewart, D.B. Leiser, Lightweight TUFROC TPS for Hypersonic Vehicles, in 14th AIAA/AHI Sp. Planes Hypersonic Systems and Technology Conference (Canberra, Australia, 2006). https://doi.org/10.2514/6.2006-7945.

  172. NASA, Toughened uni-piece fibrous reinforced oxidation-resistant composite (TUFROC), https://technology.nasa.gov/patent/TOP2-241

  173. M.A. Joseph A. Del Corso, Walter E. Bruce, III, Stephen J. Hughes, John A. Dec, Marc D. Rezin, F.M.C. B. Meador, Haiquan Guo, Douglas G. Fletcher, Anthony M. Calomino, Flexible thermal protection system development for hypersonic inflatable aerodynamic decelerators, in 9th International Planet Probe Work (2012)

    Google Scholar 

  174. M. Stackpoole, Woven Thermal Protection System (WTPS)—A Novel Approach to Meet NASA’s Most Demanding Missions (2014). https://ntrs.nasa.gov/citations/20190001650. Accessed 15 Dec 2020

  175. Silicone Polymer based Low Density Syntactic Foam (TPS-SSF P70), (n.d.). https://www.vssc.gov.in/VSSC/index.php/silicone-polymer-based-low-density-syntactic-foam-tps-ssf-p-70. Accessed 26 Dec 2020

  176. Silicone polymer based thermal protection system: PC-10 TPS (red) and (White), (n.d.). https://www.vssc.gov.in/VSSC/index.php/pc-10tps. Accessed 26 Dec 2020

  177. E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, I. Talmy, UHTCs: Ultra-High temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interface. 16, 30–36 (2007). https://doi.org/10.1002/9781118700853

  178. L. Silvestroni, D. Sciti, F. Monteverde, K. Stricker, H.J. Kleebe, Microstructure evolution of a W-doped ZrB2 ceramic upon high-temperature oxidation. J. Am. Ceram. Soc. 100, 1760–1772 (2017). https://doi.org/10.1111/jace.14738

  179. A. Paul, D.D. Jayaseelan, S. Venugopal, E. Zapata-Solvas, J. Binner, B. Vaidhyanathan, A. Heaton, P. Brown, W.E. Lee, UHTC Composites for hypersonic applications. Ultra-High Temp. Ceram. Mater. Extrem. Environ. Appl. 144–166 (2014). https://doi.org/10.1002/9781118700853.ch7

  180. A. Nisar, S. Ariharan, T. Venkateswaran, N. Sreenivas, K. Balani, Oxidation studies on TaC based ultra-high temperature ceramic composites under plasma arc jet exposure. Corros. Sci. 109, 50–61 (2016). https://doi.org/10.1016/j.corsci.2016.03.013

  181. X. Ren, H. Li, Y. Chu, Q. Fu, K. Li, Ultra-high-temperature ceramic HfB2-SiC coating for oxidation protection of SiC-coated carbon/carbon composites. Int. J. Appl. Ceram. Technol. 12, 560–567 (2015). https://doi.org/10.1111/ijac.12241

  182. D. Sciti, S. Guicciardi, M. Nygren, Densification and mechanical behavior of HfC and HfB2 fabricated by spark plasma sintering. J. Am. Ceram. Soc. 91, 1433–1440 (2008). https://doi.org/10.1111/j.1551-2916.2007.02248.x

  183. P. Sengupta, S.S. Sahoo, A. Bhattacherjee, S. Basu, I. Manna, Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite. J. Alloys Compd. 156668 (2020). https://doi.org/10.1016/j.jallcom.2020.156668

  184. E. Castle, T. Csanádi, S. Grasso, J. Dusza, M. Reece, Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8, 1–12 (2018). https://doi.org/10.1038/s41598-018-26827-1

  185. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 2–11 (2016). https://doi.org/10.1038/srep37946

  186. J. Zou, V. Rubio, J. Binner, Thermoablative resistance of ZrB2-SiC-WC ceramics at 2400 °C. Acta Mater. 133, 293–302 (2017). https://doi.org/10.1016/j.actamat.2017.05.033

  187. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, D.T. Ellerby, Characterization of zirconium diboride for thermal protection systems. Euro Ceram. Viii, Pts 1–3, 264–268, 493–496 (2004). https://doi.org/10.4028/www.scientific.net/KEM.264-268.493

  188. L. Zhang, N.P. Padture, Inhomogeneous oxidation of ZrB2-SiC ultra-high-temperature ceramic particulate composites and its mitigation. Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2017.02.076

  189. L. Silvestroni, H.J. Kleebe, W.G. Fahrenholtz, J. Watts, Super-strong materials for temperatures exceeding 2000 °C. Sci. Rep. 7, 1–8 (2017). https://doi.org/10.1038/srep40730

  190. Y. Zeng, D. Wang, X. Xiong, S. Gao, Z. Chen, W. Sun, Y. Wang, Ultra-high-temperature ablation behavior of SiC–ZrC–TiC modified carbon/carbon composites fabricated via reactive melt infiltration. J. Eur. Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.027

  191. L. Liu, L. Zhang, W. Feng, J. Li, Y. Bai, D. Tao, X. Su, Y. Cao, T. Bao, J. Zheng, Microstructure and properties of C/C–SiC composites prepared by reactive melt infiltration at low temperature in vacuum. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.11.195

  192. Z. Zhao, K. Li, W. Li, Q. Liu, G. Kou, Y. Zhang, Preparation, ablation behavior and mechanism of C/C-ZrC-SiC and C/C-SiC composites. Ceram. Int. 44, 7481–7490 (2018). https://doi.org/10.1016/j.ceramint.2018.01.125

  193. Y. Arai, R. Inoue, K. Goto, Y. Kogo, Carbon fiber reinforced ultra-high temperature ceramic matrix composites: a review. Ceram. Int. 45, 14481–14489 (2019). https://doi.org/10.1016/j.ceramint.2019.05.065

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Manna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Indian National Academy of Engineering

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, P., Manna, I. (2022). Advanced High-Temperature Structural Materials in Petrochemical, Metallurgical, Power, and Aerospace Sectors—An Overview. In: Bhattacharjee, D., Chakrabarti, S. (eds) Future Landscape of Structural Materials in India. Springer, Singapore. https://doi.org/10.1007/978-981-16-8523-1_5

Download citation

Publish with us

Policies and ethics