Skip to main content

Overview on Biological Activities of Imidazole Derivatives

  • Chapter
  • First Online:
Nanostructured Biomaterials

Abstract

Imidazole and its derivatives are one of the most important and widely used heterocycles in medicinal chemistry, natural products, and synthetic chemicals. Because of the imidazole ring's unique structural features, imidazole derivatives may easily attach to a wide range of enzymes and receptors via a number of weak interactions, demonstrating a wide range of biological and pharmacological effects. Several imidazole derivatives have been widely used in the clinic to treat a wide range of illnesses, suggesting their enormous potential for further research. In the realm of medicinal chemistry, this chapter presents a comprehensive summary of current findings in imidazole derivatives as anti-inflammatory, anticancer, antiviral, antibacterial, and other therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

U.S. FDA:

United States Food and Drug Administration

ZE:

Zollinger-Ellison syndrome

ARB:

Angiotensin II receptor blocker

DNA:

Deoxyribonucleic Acid

CNS:

Central Nervous System

ACE:

Angiotensin-converting enzyme

GABA:

Gamma-Aminobutyric Acid

NSAID:

Non-steroidal Anti-inflammatory Drugs

MTIC:

3-Methyl-(triazen-1-yl)imidazole-4-carboxamide

TIMP:

Thioinosine monophosphate

HER2:

Human Epidermal Growth Factor Receptor 2

RNA:

Ribonucleic Acid

HCV:

Hepatitis C Virus

IBS-D:

Irritable Bowel Syndrome with Diarrhoea

CYP3A:

Cytochrome P450 3A

ara-GTP:

Ara-G triphosphate

GERD:

Gastroesophageal Reflux Disease

DPP-4:

Dipeptidyl peptidase-4

GLP-1:

Glucagon-like peptide 1

GIP:

Gastric inhibitory polypeptide

TK:

Thymidine kinase

NS5A:

Nonstructural protein 5A

XMP:

Xanthosine monophosphate

References

  1. Romero DH, Heredia VET, García-Barradas O, López MEM, Pavón ES (2014) Synthesis of imidazole derivatives and their biological activities. J Chem Biochem 2:45–83

    Google Scholar 

  2. Weinreb SM (2007) Some recent advances in the synthesis of polycyclic imidazole-containing marine natural products. Nat Prod Rep 24:931–948

    CAS  Google Scholar 

  3. Jin Z (2006) Imidazole, oxazole and thiazole alkaloids. Nat Prod Rep 23:464–496

    CAS  Google Scholar 

  4. Venkatakrishnan K, Von Moltke LL, Greenblatt DJ (2000) Effects of the antifungal agents on oxidative drug metabolism. Clin Pharmacokinet 38:111–180

    CAS  Google Scholar 

  5. Niwa T, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 28:1805–1808

    CAS  Google Scholar 

  6. Bellmann R (2007) Clinical pharmacokinetics of systemically administered antimycotics. Curr Clin Pharmacol 2:37–58

    CAS  Google Scholar 

  7. Steinman RA, Brufsky AM, Oesterreich S (2012) Zoledronic acid effectiveness against breast cancer metastases—a role for estrogen in the microenvironment? Breast Cancer Res 14:213–221

    CAS  Google Scholar 

  8. Ashley ESD (2010) Pharmacology of azole antifungal agents. In: Ghannoum MA, Perfect JR (eds) Antifungal therapy. Taylor and Francis Group, New York, pp 199–218

    Google Scholar 

  9. Mishra R, Ganguly S (2012) Imidazole as an anti-epileptic: an overview. Med Chem Res 21:3929–3939

    CAS  Google Scholar 

  10. Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G (2005) Sertaconazole: updated review of a topical antifungal agent. Expert Rev Anti Infect Ther 3:333–342

    Google Scholar 

  11. Fothergill AW (2006) Miconazole: a historical perspective. Expert Rev Anti Infect Ther 4:171–175

    CAS  Google Scholar 

  12. Natarajan SR, Doherty JB (2005) P38MAP kinase inhibitors: evolution of imidazole-based and pyridopyrimidin-2-one lead classes. Curr Top Med Chem 5:987–1003

    CAS  Google Scholar 

  13. De Luca L (2006) Naturally occurring and synthetic imidazoles: their chemistry and their biological activities. Curr Med Chem 13:1–23

    Google Scholar 

  14. Kumar JR (2010) Review of imidazole heterocyclic ring containing compounds with their biological activity. Pharmacophore 1:167–177

    CAS  Google Scholar 

  15. Zhang L, Peng X-M, Damu GLV, Geng R-X, Zhou C-H (2014) Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 34:340–437

    Google Scholar 

  16. Xiong F, Chen X, Chen F (2010) An improved asymmetric total synthesis of (+)-biotin via the enantioselective desymmetrization of a meso-cyclic anhydride mediated by cinchona alkaloid-based sulphonamide. Tetrahedron Asymmetry 21:665–669

    Google Scholar 

  17. Roue M, Domart-Coulon I, Ereskovsky A, Djediat C, Perez T, Bourguet-Kondracki M-L (2010) Cellular localization of clathridimine, an antimicrobial 2-aminoimidazole alkaloid produced by the mediterranean calcareous sponge Clathrina clathrus. J Nat Prod 73:1277–1282

    CAS  Google Scholar 

  18. Liao S-M, Du Q-S, Meng J-Z, Pang Z-W, Huang R-B (2013) The multiple roles of histidine in protein interactions. Chem Cent J 7:44–56

    Google Scholar 

  19. Rigden DJ (2008) The histidine phosphatase superfamily: structure and function. Biochem J 409:333–348

    CAS  Google Scholar 

  20. Shahid M, Tripathi T, Sobia F, Moin S, Siddiqui M, Khan RA (2009) Histamine, histamine receptors, and their role in immunomodulation: an updated systematic review. Open Immunol J 2:9–41

    CAS  Google Scholar 

  21. Daniels KG, Beckett D (2010) Biochemical properties and biological function of a monofunctional microbial biotin protein ligase. Biochemistry 49:5358–5365

    CAS  Google Scholar 

  22. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    Google Scholar 

  23. Reichert JM, Wenger JB (2008) Development trends for new cancer therapeutics and vaccines. Drug Discovery Today 13:30–37

    CAS  Google Scholar 

  24. SathiyaPriya E, Mary venila S (2017) A study on classification algorithms and performance analysis of data mining using cancer data to predict lung cancer disease. Int J New Technol Res 3:88–93

    Google Scholar 

  25. Ramana Murty NV, Prasad Babu MS (2017) A critical study of classification algorithms for lung cancer disease detection and diagnosis. Int J Comput 13:1041–1048

    Google Scholar 

  26. American Cancer Society (2008) Cancer facts and figures 2008. American Cancer Society, Atlanta

    Google Scholar 

  27. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    Google Scholar 

  28. Navada S, Lai P, Schwartz AG, Kalemkerian GP (2016) Temporal trends in small cell lung cancer: analysis of the national surveillance, epidemiology, and end-results (SEER) database. J Clin Oncol 24:7082–7082

    Google Scholar 

  29. Grasso CS, Wu Y-M, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, Asangani IA, Ateeq B, Chun SY, Siddiqui J, Sam L, Anstett M, Mehra R, Prensner JR, Palanisamy N, Rysilk GA, Vandin F, Raphael BJ, Kunju LP, Rhodes DR, Pienta KJ, Chinnaiyan AM, Tomlins SA (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:239–243

    CAS  Google Scholar 

  30. McGuire S (2016) World cancer report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr 7:418–419

    Google Scholar 

  31. Bray F, Møller B (2006) Predicting the future burden of cancer. Nat Rev Cancer 6:63–74

    CAS  Google Scholar 

  32. Ali I, Wani WA, Saleem K (2011) Cancer scenario in India with future perspectives. Cancer Ther 8:56–70

    Google Scholar 

  33. Pereira C, Leão M, Soares J, Bessa C, Saraiva L (2012) New therapeutic strategies for cancer and neurodegeneration emerging from yeast cell-based systems. Curr Pharm Des 18:4223–4235

    CAS  Google Scholar 

  34. Ali I, Lone MN, Al-Othman ZA, Al-Warthan A, Sanagi MM (2015) Heterocyclic scaffolds: centrality in anticancer drug development. Curr Drug Targets 16:711–734

    CAS  Google Scholar 

  35. Ali I, Lone MN, Aboul-Enein HY (2017) Imidazoles as potential anticancer agents. Med Chem Commun 12:3–35

    Google Scholar 

  36. Hill RA (2009) Marine natural products. Annu Rep Prog Chem Sect B Org Chem 105:150–166

    Google Scholar 

  37. Forte B, Malgesini B, Piutti C, Quartieri F, Scolaro A, Papeo G (2009) A submarine journey: the pyrroleimidazole alkaloids. Mar Drugs 7:705–753

    CAS  Google Scholar 

  38. Jin Z (2011) Muscarine, imidazole, oxazole, and thiazole alkaloids. Nat Prod Rep 28:1143–1191

    CAS  Google Scholar 

  39. Gao G, Xiao R, Yuan Y, Zhou CH, You JS, Xie RG (2002) Efficient imidazolium catalysts for the benzoin condensation. J Chem Res 2002:262–263

    Google Scholar 

  40. Jiang HY, Zhou CH, Luo K, Chen H, Lan JB, Xie RG (2006) Chiral imidazole metalloenzyme models: synthesis and enantioselective hydrolysis for α-amino acid esters. J Mol Catal A Chem 260:288–294

    CAS  Google Scholar 

  41. Li LX, Hu JY, Wang H, Yu QB, Yue LH (2012) Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules 13:873–880

    CAS  Google Scholar 

  42. Alniss HY, Anthony NG, Khalaf AI, Mackay SP, Suckling CJ, Waigh RD, Wheate NJ, Parkinson JA (2012) Rationalising sequence selection by ligand assemblies in the DNA minor groove: the case for thiazotropsin A. Chem Sci 3:711–722

    CAS  Google Scholar 

  43. Ketron AC, Denny WA, Graves DE, Osheroff N (2012) Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry 51:1730–1739

    CAS  Google Scholar 

  44. Wang X, Li Y, Gong S, Fu D (2002) A spectroscopic study on the DNA binding behavior of the anticancer drug dacarbazine. Spectrosc Lett 35:751–756

    CAS  Google Scholar 

  45. Baroniya S, Anwer Z, Sharma PK, Dudhe R, Kumar N (2010) Recent advancement in imidazole as anti-cancer agents: a review. Der Pharmacia Sinica 1:172–182

    CAS  Google Scholar 

  46. Iradyan MA, Iradyan NS, Stepanyan GM, Arsenyan FG, Garibdzhanyan BT (2010) Antitumor activity of imidazole derivatives: dacarbazine and the new alkylating agent imidazene (review). Pharm Chem J 44:175–182

    CAS  Google Scholar 

  47. Gaba M, Mohan C (2016) Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med Chem Res 25:173–210

    CAS  Google Scholar 

  48. Verma A, Joshi S, Singh D (2013) Imidazole: having versatile biological activities. J Chem 2013:329412, 12 pages

    Google Scholar 

  49. Cai JL, Li S, Zhou CH, Wu J (2009) Advance in research of imidazoles as anti-tumor agents. Chin J New Drugs 18:598–608

    CAS  Google Scholar 

  50. Zhou C, Hassner A (2001) Synthesis and anticancer activity of novel chiral glucose derived bis-imidazoles and their analogs. Carbohydr Res 333:313–326

    CAS  Google Scholar 

  51. Jone EB (2011) Antimicrobial agents: antifungal agents, in “Goodman and Gilman’s”. In: Laurence LB, Chabner BA, Knollmann BC (eds) The pharmacological basis of therapeutics, 11th edn. McGraw-Hill Inc Health Professions Division, New York

    Google Scholar 

  52. Gubbins P, Anaissie E (2006) Overview of antifungal agents. Pharmacy Practice News

    Google Scholar 

  53. Sheppard D, Lampiris HW (2004) Antifungal agents. In: Katzung BG (ed) Basic and clinical pharmacology, 9th edn. Appleton and Lange. Norwalk, Connecticut

    Google Scholar 

  54. Fromtling RA (1988) Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1:187–217

    CAS  Google Scholar 

  55. Ralph HR, Roy LH (1999) Antifungal agents. In: Munson PL (ed) Principles of pharmacology, basic concepts and clinical applications. Chapman and Hall, New York

    Google Scholar 

  56. Hafeez A, Kazmi I (2017) Dacarbazine nanoparticle topical delivery system for the treatment of melanoma. Sci Rep 7:16517. https://doi.org/10.1038/s41598-017-16878-1

    Article  CAS  Google Scholar 

  57. Friis T, Engel AE, Bendiksen CD, Larsen LS, Houen G (2013) Influence of levamisole and other angiogenesis inhibitors on angiogenesis and endothelial cell morphology in vitro. Cancers 5:762–785

    CAS  Google Scholar 

  58. Ahmadvand D, Rahbarizadeh F, Iri-Sofla FJ, Namazi G, Khaleghi S, Geramizadeh B, Pasalar P, Karimi H, Bakhtiari SHA (2010) Inhibition of angiogenesis by recombinant VEGF receptor fragments. Science 41:417–422

    Google Scholar 

  59. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012

    Google Scholar 

  60. Ruch C, Skiniotis G, Steinmetz MO, Walz T, Ballmer-Hofer K (2007) Structure of a VEGF-VEGF receptor complex determined by electron microscopy. Nat Struct Mol Biol 14:249–250

    CAS  Google Scholar 

  61. Kiselyov AS, Semenova M, Semenov VV (2006) Hetaryl imidazoles: a novel dual inhibitors of VEGF receptors I and II. Bioorg Med Chem Lett 16:1440–1444

    CAS  Google Scholar 

  62. Abdullaziz MA, Abdel-Mohsen HT, Kerdawy AME, Ragab FAF, Ali MA, Abu-bakr SM, Girgis AS, Diwani HIE (2017) Design, synthesis, molecular docking and cytotoxic evaluation of novel 2-furybenzimidazoles as VEGFR-2 inhibitors. Eur J Med Chem 136:315–329

    CAS  Google Scholar 

  63. Zhou J, Giannakakou P (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem Anti Cancer Agents 5:65–71

    CAS  Google Scholar 

  64. Dong M, Liu F, Zhou H, Zhai S, Yan B (2016) Review on novel natural product- and privileged scaffold-based tubulin inhibitors targeting the colchicine binding site. Molecules 21:1375

    Google Scholar 

  65. Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Review on histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18:1414

    Google Scholar 

  66. Bressi JC, de Jong R, Wu Y, Jennings AJ, Brown JW, O’Connell S, Tari LW, Skene RJ, Vu P, Navre M, Cao X, Gangloff AR (2010) Benzimidazole and imidazole inhibitors of histone deacetylases: synthesis and biological activity. Bioorg Med Chem Lett 20:3138–3141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandi C. Malakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gujjarappa, R. et al. (2022). Overview on Biological Activities of Imidazole Derivatives. In: Swain, B.P. (eds) Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-8399-2_6

Download citation

Publish with us

Policies and ethics