Skip to main content

Development of αβ T Cells with Innate Functions

  • Chapter
  • First Online:
Innate Lymphoid Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1365))

Abstract

Although we mostly think of αβ T cells as components of the adaptive immune system, a number of them differentiate into alternative lineages. These lineages express TCRs with limited diversity, and functionally bridge the gap between innate and adaptive immunity. They tend to be tissue resident, and mount potent cytokine responses very rapidly after activation, and their development and functional maturation are strongly influenced by the microbiome. Here, we compare the development pathways and interactions with the microbiome of natural killer T (NKT) cells and mucosal-associated invariant T (MAIT cells), the two best studied “innate-like” αβ T cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Godfrey DI. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16:1114–23.

    Article  CAS  PubMed  Google Scholar 

  2. Kawano T, Cui J, Koezuka Y, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science. 1997;278:1626–9.

    Article  CAS  PubMed  Google Scholar 

  3. Slauenwhite D, Johnston B. Regulation of NKT cell localization in homeostasis and infection. Front Immunol. 2015;6:255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pellicci DG, Uldrich AP. Unappreciated diversity within the pool of CD1d-restricted T cells. Semin Cell Dev Biol. 2018;84:835–44.

    Article  CAS  Google Scholar 

  5. Kjer-Nielsen L, Patel O, Corbett AJ, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491:717–23.

    Article  CAS  PubMed  Google Scholar 

  6. Rahimpour A, Koay HF, Enders A, et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med. 2015;212:1095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nel I, Bertrand L, Toubal A, Lehuen A. MAIT cells, guardians of skin and mucosa. Mucosal Immunol. 2021;14:803–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dusseaux M. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117:1250–9.

    Article  CAS  PubMed  Google Scholar 

  9. Gherardin NA, McCluskey J, Rossjohn J, Godfrey DI. The diverse family of MR1-restricted T cells. J Immunol. 2018;201:2862–71.

    Article  CAS  PubMed  Google Scholar 

  10. Iwamura C, Nakayama T. Role of CD1d- and MR1-restricted T cells in asthma. Front Immunol. 2018;9:1942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Toubal A, Lehuen A. Role of MAIT cells in metabolic diseases. Mol Immunol. 2021;130:142–7.

    Article  CAS  PubMed  Google Scholar 

  12. LaMarche NM, Kohlgruber AC, Brenner MB. Innate T cells govern adipose tissue biology. J Immunol. 2018;201:1827–34.

    Article  CAS  PubMed  Google Scholar 

  13. Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol. 2019;20:1110–28.

    Article  CAS  PubMed  Google Scholar 

  14. Lin Q, Kuypers M, Philpott DJ, Mallevaey T. The dialogue between unconventional T cells and the microbiota. Mucosal Immunol. 2020;13:867–76.

    Article  CAS  PubMed  Google Scholar 

  15. Cox JR, Cruickshank SM, Saunders AE. Maintenance of barrier tissue integrity by unconventional lymphocytes. Front Immunol. 2021;12:670471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seo GY, Giles DA, Kronenberg M. The role of innate lymphoid cells in response to microbes at mucosal surfaces. Mucosal Immunol. 2020;13:399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Juno JA, Keynan Y, Fowke KR. Invariant NKT cells: regulation and function during viral infection. PLoS Pathog. 2012;8:e1002838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gebhardt T, Palendira U, Tscharke DC, Bedoui S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol Rev. 2018;283:54–76.

    Article  CAS  PubMed  Google Scholar 

  19. Nel I, Beaudoin L, Lehuen A. MAIT cells in type 1 diabetes mouse models. Methods Mol Biol. 2020;2098:283–97.

    Article  CAS  PubMed  Google Scholar 

  20. Rouxel O, Da Silva J, Beaudoin L, et al. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat Immunol. 2017;18:1321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magalhaes I, Kiaf B, Lehuen A. iNKT and MAIT cell alterations in diabetes. Front Immunol. 2015;6:341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Burrello C, Pellegrino G, Giuffrè MR, et al. Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Sci Alliance. 2019;2:e201800229.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei DG, Lee H, Park SH, et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J Exp Med. 2005;202:239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bendelac A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med. 1995;182:2091–6.

    Article  CAS  PubMed  Google Scholar 

  25. Gapin L, Matsuda JL, Surh CD, Kronenberg M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol. 2001;2:971–8.

    Article  CAS  PubMed  Google Scholar 

  26. Treiner E, Duban L, Bahram S, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 2003;422:164–9.

    Article  CAS  PubMed  Google Scholar 

  27. Seach N, Guerri L, Le Bourhis L, et al. Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol. 2013;191:6002–9.

    Article  CAS  PubMed  Google Scholar 

  28. Martin E, Treiner E, Duban L, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009;7:e54.

    Article  PubMed  CAS  Google Scholar 

  29. Krangel MS. T cell development: better living through chromatin. Nat Immunol. 2007;8:687–94.

    Article  CAS  PubMed  Google Scholar 

  30. Egawa T, Eberl G, Taniuchi I, et al. Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors. Immunity. 2005;22:705–16.

    Article  CAS  PubMed  Google Scholar 

  31. Hu T, Simmons A, Yuan J, Bender TP, Alberola-Ila J. The transcription factor c-Myb primes CD4+CD8+ immature thymocytes for selection into the iNKT lineage. Nat Immunol. 2010;11:435–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bezbradica JS, Hill T, Stanic AK, Van Kaer L, Joyce S. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. Proc Natl Acad Sci U S A. 2005;102:5114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D’Cruz LM, Knell J, Fujimoto JK, Goldrath AW. An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells. Nat Immunol. 2010;11:240–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yuan J, Crittenden RB, Bender TP. C-Myb promotes the survival of CD4+CD8+ double-positive thymocytes through upregulation of Bcl-xL. J Immunol. 2010;184:2793–804.

    Article  CAS  PubMed  Google Scholar 

  35. Reantragoon R, Corbett AJ, Sakala IG, et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosalassociated invariant T cells. J Exp Med. 2013;210:2305–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo J, Hawwari A, Li H, et al. Regulation of the TCRalpha repertoire by the survival window of CD4(+)CD8(+) thymocytes. Nat Immunol. 2002;3:469–76.

    Article  PubMed  CAS  Google Scholar 

  37. Okada S, Markle JG, Deenick EK, et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349:606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou D, Mattner J, Cantu C, et al. Lysosomal glycosphingolipid recognition by NKT cells. Science. 2004;306:1786–9.

    Article  CAS  PubMed  Google Scholar 

  39. Porubsky S, Speak AO, Luckow B, Cerundolo V, et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci U S A. 2007;104:5977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Facciotti F, Ramanjaneyulu GS, Lepore M, et al. Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat Immunol. 2012;13:474–80.

    Article  CAS  PubMed  Google Scholar 

  41. Kain L, Webb B, Anderson BL, et al. The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity. 2014;41:543–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kain L, Costanzo A, Webb B, et al. Endogenous ligands of natural killer T cells are alpha-linked glycosylceramides. Mol Immunol. 2015;68:94–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burns CM, Sakaguchi K, Appella E, Ashwell JD. CD45 regulation of tyrosine phosphorylation and enzyme activity of src family kinases. J Biol Chem. 1994;269:13594–600.

    Article  CAS  PubMed  Google Scholar 

  44. Koay HF, Gherardin NA, Enders A, et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol. 2016;17:1300–11.

    Article  CAS  PubMed  Google Scholar 

  45. Legoux F, Bellet D, Daviaud C, et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science. 2019;366:494–9.

    Article  CAS  PubMed  Google Scholar 

  46. Legoux F, Gilet J, Procopio E, Echasserieau K, Bernardeau K, Lantz O. Molecular mechanisms of lineage decisions in metabolite-specific T cells. Nat Immunol. 2019;20:1244–55.

    Article  CAS  PubMed  Google Scholar 

  47. Griewank K, Borowski C, Rietdijk S, et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity. 2007;27:751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koay HF, Su S, Amann-Zalcenstein D, et al. A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Sci Immunol. 2019;4:eaay6039.

    Article  CAS  PubMed  Google Scholar 

  49. Georgiev H, Peng C, Huggins MA, Jameson SC, Hogquist KA. Classical MHC expression by DP thymocytes impairs the selection of non-classical MHC restricted innate-like T cells. Nat Commun. 2021;12:2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Savage AK, Constantinides MG, Han J, et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity. 2008;29:1–13.

    Article  CAS  Google Scholar 

  51. Kovalovsky D, Uche OU, Eladad S, et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol. 2008;9:1055–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alberola-Ila J, Hernandez-Hoyos G. The Ras/MAPK cascade and the control of positive selection. Immunol Rev. 2003;191:79–96.

    Article  CAS  PubMed  Google Scholar 

  53. Neilson JR, Winslow MM, Hur EM, Crabtree GR. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity. 2004;20:255–66.

    Article  CAS  PubMed  Google Scholar 

  54. Prince AL, Yin CC, Enos ME, Felices M, Berg LJ. The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development. Immunol Rev. 2009;228:115–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Readinger JA, Mueller KL, Venegas AM, Horai R, Schwartzberg PL. Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev. 2009;228:93–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lazarevic V, Zullo AJ, Schweitzer MN, et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat Immunol. 2009;10:306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu T, Gimferrer I, Simmons A, Wiest D, Alberola-Ila J. The Ras/MAPK pathway is required for generation of iNKT cells. PLoS One. 2011;6:e19890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Felices M, Berg LJ. The Tec kinases Itk and Rlk regulate NKT cell maturation, cytokine production, and survival. J Immunol. 2008;180:3007–18.

    Article  CAS  PubMed  Google Scholar 

  59. Bettini M, Xi H, Milbrandt J, Kersh GJ. Thymocyte development in early growth response gene 1-deficient mice. J Immunol. 2002;169:1713–20.

    Article  CAS  PubMed  Google Scholar 

  60. Lauritsen JP, Kurella S, Lee SY, et al. Egr2 is required for Bcl-2 induction during positive selection. J Immunol. 2008;181:7778–85.

    Article  CAS  PubMed  Google Scholar 

  61. Seiler MP, Mathew R, Liszewski MK, et al. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat Immunol. 2012;13:264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moran AE, Holzapfel KL, Xing Y, et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med. 2011;208:1279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Veillette A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb Perspect Biol. 2010;2:a002469.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol. 2010;29:665–705.

    Article  CAS  Google Scholar 

  65. Jordan MA, Fletcher JM, Pellicci D, Baxter AG. Slamf1, the NKT cell control gene Nkt1. J Immunol. 2007;178:1618–27.

    Article  CAS  PubMed  Google Scholar 

  66. Wang N, Satoskar A, Faubion W, et al. The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med. 2004;199:1255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Howie D, Laroux FS, Morra M, et al. Cutting edge: the SLAM family receptor Ly108 controls T cell and neutrophil functions. J Immunol. 2005;174:5931–5.

    Article  CAS  PubMed  Google Scholar 

  68. Baxter AG, Kinder SJ, Hammond KJ, Scollay R, Godfrey DI. Association between alphabetaTCR+CD4-CD8- T-cell deficiency and IDDM in NOD/Lt mice. Diabetes. 1997;46:572–82.

    Article  CAS  PubMed  Google Scholar 

  69. Esteban LM, Tsoutsman T, Jordan MA, et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol. 2003;171:2873–8.

    Article  CAS  PubMed  Google Scholar 

  70. Chen S, Cai C, Li Z, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang B, Gomez-Rodriguez J, Preite S, Garrett LJ, Harper UL, Schwartzberg PL. CRISPR-mediated triple knockout of SLAMF1, SLAMF5 and SLAMF6 supports positive signaling roles in NKT cell development. PLoS One. 2016;11:e0156072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hu JK, Crampton JC, Locci M, Crotty S. CRISPR-mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption reveals NKT cell defects but not T follicular helper cell defects. PLoS One. 2016;11:e0156074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. De Calisto J, Wang N, Wang G, Yigit B, Engel P, Terhorst C. SAP-dependent and -independent regulation of innate T cell development involving SLAMF receptors. Front Immunol. 2014;5:186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kageyama R, Cannons JL, Zhao F, et al. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity. 2012;36:986–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasquier B, Yin L, Fondaneche MC, et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med. 2005;201:695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nichols KE, Hom J, Gong SY, et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med. 2005;11:340–5.

    Article  CAS  PubMed  Google Scholar 

  77. Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J Immunol. 2005;174:3153–7.

    Article  CAS  PubMed  Google Scholar 

  78. Lu Y, Zhong MC, Qian J, et al. SLAM receptors foster iNKT cell development by reducing TCR signal strength after positive selection. Nat Immunol. 2019;20:447–57.

    Article  CAS  PubMed  Google Scholar 

  79. Dutta M, Kraus ZJ, Gomez-Rodriguez J, et al. A role for Ly108 in the induction of promyelocytic zinc finger transcription factor in developing thymocytes. J Immunol. 2013;190:2121–8.

    Article  CAS  PubMed  Google Scholar 

  80. Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A. A thymic precursor to the NK T cell lineage. Science. 2002;296:553–5.

    Article  CAS  PubMed  Google Scholar 

  81. Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI. A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(−)CD4(+) CD1d-dependent precursor stage. J Exp Med. 2002;195:835–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Terashima A, Watarai H, Inoue S, et al. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med. 2008;205:2727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Watarai H, Nakagawa R, Omori-Miyake M, Dashtsoodol N, Taniguchi M. Methods for detection, isolation and culture of mouse and human invariant NKT cells. Nat Protoc. 2008;3:70–8.

    Article  CAS  PubMed  Google Scholar 

  84. Michel ML, Keller AC, Paget C, et al. Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med. 2007;204:995–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Constantinides MG, Bendelac A. Transcriptional regulation of the NKT cell lineage. Curr Opin Immunol. 2013;25:161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol. 2013;14:1146–54.

    Article  CAS  PubMed  Google Scholar 

  87. Engel I, Kronenberg M. Transcriptional control of the development and function of valpha14i NKT cells. Curr Top Microbiol Immunol. 2014;381:51–81.

    PubMed  Google Scholar 

  88. Engel I, Seumois G, Chavez L, et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat Immunol. 2016;17:728–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Georgiev H, Ravens I, Benarafa C, Förster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun. 2016;7:13116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee YJ, Starrett GJ, Lee ST, et al. Lineage-specific effector signatures of invariant NKT cells are shared amongst γδ T, innate lymphoid, and Th cells. J Immunol. 2016;197:1460–70.

    Article  CAS  PubMed  Google Scholar 

  91. Wang H, Hogquist KA. CCR7 defines a precursor for murine iNKT cells in thymus and periphery. elife. 2018;7:e34793.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hu T, Wang H, Simmons A, et al. Increased level of E protein activity during invariant NKT development promotes differentiation of invariant NKT2 and invariant NKT17 subsets. J Immunol. 2013;191:5065–73.

    Article  CAS  PubMed  Google Scholar 

  93. Bain G, Cravatt CB, Loomans C, Alberola-Ila J, Hedrick SM, Murre C. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat Immunol. 2001;2:165–71.

    Article  CAS  PubMed  Google Scholar 

  94. Tuttle KD, Krovi SH, Zhang J, et al. TCR signal strength controls thymic differentiation of iNKT cell subsets. Nat Commun. 2018;9:2650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhao M, Svensson MND, Venken K, et al. Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70. Nat Commun. 2018;9:2627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Cruz Tleugabulova M, Zhao M, Lau I, et al. The protein phosphatase Shp1 regulates invariant NKT cell effector differentiation independently of TCR and Slam signaling. J Immunol. 2019;202:2276–86.

    Article  PubMed  CAS  Google Scholar 

  97. Plas DR, Johnson R, Pingel JT, et al. Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science. 1996;272:1173–6.

    Article  CAS  PubMed  Google Scholar 

  98. Park JY, DiPalma DT, Kwon J, Fink J, Park JH. Quantitative difference in PLZF protein expression determines iNKT lineage fate and controls innate CD8 T cell generation. Cell Rep. 2019;27:2548–2557.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gordy LE, Bezbradica JS, Flyak AI, et al. IL-15 regulates homeostasis and terminal maturation of NKT cells. J Immunol. 2011;187:6335–45.

    Article  CAS  PubMed  Google Scholar 

  100. Miller CN, Proekt I, von Moltke J, et al. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature. 2018;559:627–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rymarchyk SL, Lowenstein H, Mayette J, et al. Widespread natural variation in murine natural killer T-cell number and function. Immunology. 2008;125:331–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hammond KJ, Pellicci DG, Poulton LD, et al. CD1d-restricted NKT cells: an interstrain comparison. J Immunol. 2001;167:1164–73.

    Article  CAS  PubMed  Google Scholar 

  103. Cameron G, Pellicci DG, Uldrich AP, et al. Antigen specificity of type I NKT cells is governed by TCR β-chain diversity. J Immunol. 2015;195:4604–14.

    Article  CAS  PubMed  Google Scholar 

  104. Clancy-Thompson E, Chen GZ, Tyler PM, et al. Monoclonal invariant NKT (iNKT) cell mice reveal a role for both tissue of origin and the TCR in development of iNKT functional subsets. J Immunol. 2017;199:159–71.

    Article  CAS  PubMed  Google Scholar 

  105. Schümann J, Voyle RB, Wei BY, MacDonald HR. Cutting edge: influence of the TCR V beta domain on the avidity of CD1d:alpha-galactosylceramide binding by invariant V alpha 14 NKT cells. J Immunol. 2003;170:5815–9.

    Article  PubMed  Google Scholar 

  106. Chun T, Page MJ, Gapin L, et al. CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J Exp Med. 2003;197:907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Salou M, Legoux F, Gilet J, et al. A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J Exp Med. 2019;216:133–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity. 2015;43:566–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thomas SY, Scanlon ST, Griewank KG, et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J Exp Med. 2011;208:1179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lynch L, Michelet X, Zhang S, et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat Immunol. 2015;16:85–95.

    Article  CAS  PubMed  Google Scholar 

  111. Lynch L, Nowak M, Varghese B, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37:574–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest. 2014;124:3725–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chang PP, Barral P, Fitch J, et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol. 2011;13:35–43.

    Article  PubMed  CAS  Google Scholar 

  114. Jimeno R, Lebrusant-Fernandez M, Margreitter C, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8:e51663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Murray MP, Engel I, Seumois G, et al. Transcriptome and chromatin landscape of iNKT cells are shaped by subset differentiation and antigen exposure. Nat Commun. 2021;12:1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wingender G, Stepniak D, Krebs P, et al. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology. 2012;143:418–28.

    Article  CAS  PubMed  Google Scholar 

  117. Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. An D, Oh SF, Olszak T, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014;156:123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gensollen T, Lin X, Zhang T, et al. Embryonic macrophages function during early life to determine invariant natural killer T cell levels at barrier surfaces. Nat Immunol. 2021;22:699–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44:439–49.

    Article  CAS  PubMed  Google Scholar 

  121. Bain CC, Bravo-Blas A, Scott CL, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol. 2014;15:929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rantakari P, Jäppinen N, Lokka E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392–6.

    Article  CAS  PubMed  Google Scholar 

  123. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7:311–7.

    Article  CAS  PubMed  Google Scholar 

  124. Constantinides MG, Link VM, Tamoutounour S, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366:eaax6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.A.I. is funded by NIH R01 AI129458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alberola-Ila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alberola-Ila, J. (2022). Development of αβ T Cells with Innate Functions. In: Sun, XH. (eds) Innate Lymphoid Cells. Advances in Experimental Medicine and Biology, vol 1365. Springer, Singapore. https://doi.org/10.1007/978-981-16-8387-9_10

Download citation

Publish with us

Policies and ethics