Skip to main content

Imaging Technique for Ventilatory Management of ARDS Patients: Novel Monitoring Tool—Electrical Impedance Tomography

  • Chapter
  • First Online:
Acute Respiratory Distress Syndrome

Abstract

Because of the large heterogeneity in lung mechanics across the patient with ARDS, uneven distribution can be exaggerated by positive pressure ventilation. A modality that can offer dynamic image of ventilation may benefit for the individualized lung protective management. Ideal imaging technique for ventilatory management of ARDS patients is expected to be used at bedside repeatedly at any time given during the clinical course. Electrical impedance tomography (EIT) is a real-time, non-invasive monitoring tool that can visualize the distribution of ventilation how the lungs are ventilated. The temporal and spatial distribution and time delay during both inspiratory and expiratory phase are not only visually recognized, but also quantified as clinically distinctive parameters by adding subsequent analysis using recorded impedance data. In clinical practice aiming at homogenous ventilation to prevent further lung injury, EIT can be used to evaluate the existing pathological condition and the real-time response to therapeutic interventions, such as change in ventilatory settings, prone positioning, and administration of muscle relaxant, which helps clinicians choose appropriate strategies to fit individual patient’s needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. https://doi.org/10.1001/jama.2016.0291.

    Article  CAS  PubMed  Google Scholar 

  2. Retamal J, Hurtado D, Villarroel N, Bruhn A, Bugedo C, Amato MBP, et al. Does regional lung strain correlate with regional inflammation in acute respiratory distress syndrome during nonprotective ventilation? An experimental porcine study*. Crit Care Med. 2018;46(6):e591–9. https://doi.org/10.1097/CCM.0000000000003072.

    Article  PubMed  Google Scholar 

  3. Yoshida T, Amato MBP, Grieco DL, Chen L, Lima CAS, Roldan R, et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med. 2018;197(8):1018–26.

    Article  Google Scholar 

  4. Much G, Venegas JG. Positron emission tomography imaging of regional pulmonary perfusion and ventilation. Proc Am Thorac Soc. 2005;2(6):522–7, 508–9. https://doi.org/10.1513/pats.200508-088DS.

    Article  Google Scholar 

  5. Bouhemad B, Mongodi S, Via G, Rouquette I. Ultrasound for “lung monitoring” of ventilated patients. Anesthesiology. 2015;122(2):437–47. https://doi.org/10.1097/ALN.0000000000000558.

    Article  PubMed  Google Scholar 

  6. Bodenstein M, David M, Markstaller K. Principles of electrical impedance tomography and its clinical application. Crit Care Med. 2009;37(2):713–24.

    Article  Google Scholar 

  7. Adler A, Amyot R, Guardo R, Bates JHT, Berthiaume Y. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol. 1997;83(5):1762.

    Article  CAS  Google Scholar 

  8. Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2016;72(1):83–93.

    Article  Google Scholar 

  9. Mojoli F, Bouhemad B, Mongodi S, Lichtenstein D. Lung ultrasound for critically Ill patients. Am J Respir Crit Care Med. 2019;199(6):701–14.

    Article  Google Scholar 

  10. Bikker IG, Leonhardt S, Reis Miranda D, Bakker J, Gommers D. Bedside measurement of changes in lung impedance to monitor alveolar ventilation in dependent and non-dependent parts by electrical impedance tomography during a positive end-expiratory pressure trial in mechanically ventilated intensive care unit patient. Crit Care. 2010;14(3):R100.

    Article  Google Scholar 

  11. Lowhagen K, Lundin SSO. Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome assessed by electric impedance tomography. Minerva Anestesiol. 2010;76:1024–35.

    CAS  PubMed  Google Scholar 

  12. Blankman P, Shono A, Hermans BJM, Wesselius T, Hasan D, Gommers D. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients. Br J Anaesth. 2016;116(6):862–9.

    Article  CAS  Google Scholar 

  13. Karagiannidis C, Waldmann AD, Róka PL, Schreiber T, Strassmann S, Windisch W, Böhm SH. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Crit Care. 2018;22(1):221.

    Article  Google Scholar 

  14. Zhao Z, Steinmann D, Frerichs I, Guttmann J, Möller K. PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010;14(1):R8.

    Article  Google Scholar 

  15. Frerichs I, Dargaville PA, Van Genderingen H, Morel DR, Rimensberger PC. Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med. 2006;174(7):772–9.

    Article  Google Scholar 

  16. Muders T, Luepschen H, Zinserling J, Greschus S, Fimmers R, Guenther U, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury*. Crit Care Med. 2012;40(3):903–11.

    Article  Google Scholar 

  17. Zhao Z, Chang MY, Chang MY, Gow CH, Zhang JH, Hsu YL, Frerichs I, Chang HT, Möller K. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):7. https://doi.org/10.1186/s13613-019-0484-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heines SJH, Strauch U, van de Poll MCG, Roekaerts PMHJ, Bergmans DCJJ. Clinical implementation of electric impedance tomography in the treatment of ARDS: a single centre experience. J Clin Monit Comput. 2019;33(2):291–300. https://doi.org/10.1007/s10877-018-0164-x.

    Article  PubMed  Google Scholar 

  19. Kallet RH, Branson RD. Do the NIH ARDS clinical trials network PEEP/FiO2 tables provide the best evidence-based guide to balancing PEEP and FiO2 settings in adults? Respir Care. 2007;52(4):461–75.

    PubMed  Google Scholar 

  20. Jain SV, Kollisch-Singule M, Satalin J, Searles Q, Luke Dombert L, Abdel-Razek O, et al. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model. Intensive Care Med Exp. 2017;5(1):25. https://doi.org/10.1186/s40635-017-0138-1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Costa ELV, Borges JB, Melo A, Suarez-Sipmann F, Toufen C, Bohm SH, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–7.

    Article  Google Scholar 

  22. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  Google Scholar 

  23. Gattinoni L, Busana M, Giosa L, Macrì MM, Quintel M. Prone positioning in acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40:94–100.

    Article  Google Scholar 

  24. Scaramuzzo G, Ball L, Pino F, Ricci L, Larsson A, Guérin C, et al. Influence of positive end-expiratory pressure titration on the effects of pronation in acute respiratory distress syndrome: a comprehensive experimental study. Front Physiol. 2020;11:179. https://doi.org/10.3389/fphys.2020.00179.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019*. Crit Care Med. 2020;48:1129–34.

    Article  CAS  Google Scholar 

  26. Franchineau G, Bréchot N, Lebreton G, Hekimian G, Nieszkowska A, Trouillet J-L, et al. Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(4):447–57.

    Article  CAS  Google Scholar 

  27. Shono A, Somhorst P, Gommers D. Electrical impedance tomography and trans-pulmonary pressure measurements in a patient with extreme respiratory drive. Respir Med Case Rep. 2017;20:141–4.

    PubMed  PubMed Central  Google Scholar 

  28. Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa ELV, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188(12):1420–7.

    Article  Google Scholar 

  29. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.

    Article  CAS  Google Scholar 

  30. Wolf GK, Gómez-Laberge C, Rettig JS, Vargas S, Smallwood CD, Prabhu SP, et al. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Crit Care Med. 2013;41(5):1296–304. https://doi.org/10.1097/CCM.0b013e3182771516.

    Article  PubMed  Google Scholar 

  31. Zhao Z, Chang MY, Chang MY, Gow CH, Zhang JH, Hsu YL, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Kotani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shono, A., Kotani, T. (2022). Imaging Technique for Ventilatory Management of ARDS Patients: Novel Monitoring Tool—Electrical Impedance Tomography. In: Tasaka, S. (eds) Acute Respiratory Distress Syndrome. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-16-8371-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8371-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8370-1

  • Online ISBN: 978-981-16-8371-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics