Skip to main content

Role of Composite Materials in Automotive Sector: Potential Applications

  • Chapter
  • First Online:
Advances in Engine Tribology

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

In the 21stcentury, researchers have turned their attention towards composite materials (CMs) concerning lightweight applications in the automobile sector. Researchers have found a way to achieve better fuel efficiency by substituting conventional materials with novel variants. The history and state-of-the-art applications of composite materials in the automotive sector are presented. Material characteristics required for the substitution of composite materials over traditional automobile components are also discussed. The application of novel composite variants for automobiles offers significant advancements in material properties in terms of lightweight, cost, sustainability, and crashworthiness. Weight reduction in an automobile component exhibited by composite materials increased the fuel efficiency with reduced automobile emission. In addition, composite materials offered safety and comfort with improved vehicle performance due to the superior mechanical properties over conventional materials. Bio-composites comprised of natural material in metals and polymers have revealed a positive impact on environmental friendliness retaining its exceptional material properties for desired automotive application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal ML (2017) Experimental investigation into the effect of noise and damping using composite spur gear. Mater Today Proc 4(2):2777–2782

    Google Scholar 

  • Ahmadijokani F, Shojaei A, Arjmand M, Alaei Y, Yan N (2019) Effect of short carbon fiber on thermal, mechanical and tribological behavior of phenolic-based brake friction materials. Compos B Eng 168:98–105

    Article  CAS  Google Scholar 

  • Airale A, Ferraris A, Xu S, Sisca L, Massai P (2017) Function integration concept design applied on CFRP cross leaf spring suspension. Int J Autom Compos 3(2–4):276–293

    Google Scholar 

  • Akampumuza O, Wambua PM, Ahmed A, Li W, Qin XH (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38(11):2553–2569

    Article  CAS  Google Scholar 

  • Alemayehu Z, Nallamothu RB, Liben M, Nallamothu SK, Nallamothu AK (2021) Experimental investigation on characteristics of sisal fiber as composite material for light vehicle body applications. Mater Today Proc 38:2439–2444

    Article  CAS  Google Scholar 

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polymers 12(7):919–926

    Article  CAS  Google Scholar 

  • Bai Y, Zhang H, Shao Y, Zhang H, Zhu J (2021) Recent progresses of superhydrophobic coatings in different application fields: an overview. Coatings 11(2):116

    Google Scholar 

  • Bouzouita A, Notta-Cuvier D, Raquez JM, Lauro F, Dubois P (2017) Poly (lactic acid)-based materials for automotive applications. Indus Appl Poly (Lactic acid):177–219

    Google Scholar 

  • Carello M, Airale AG (2014) Composite suspension arm optimization for the city vehicle XAM 2.0. In: Design and computation of modern engineering materials, pp 257–272. Springer, Cham

    Google Scholar 

  • Chandra AK, Kumar NR (2017) Polymer nanocomposites for automobile engineering applications. In: Properties and applications of polymer nanocomposites, pp 139–172. Springer, Berlin, Heidelberg

    Google Scholar 

  • Chaudhary A, Gupta V, Teotia S, Nimanpure S, Rajak DK (2020) Electromagnetic shielding capabilities of metal matrix composites

    Google Scholar 

  • Choi BL, Choi BH (2015) Numerical method for optimizing design variables of carbon-fiber-reinforced epoxy composite coil springs. Compos B Eng 82:42–49

    Article  CAS  Google Scholar 

  • Chopane A, Gupta S, Ajit A, Kakroo S, Salve A (2018) Design and analysis of plastic gears in rack and pinion steering system for formula supra car. Mater Today Proc 5(2):5154–5164

    Google Scholar 

  • Cui S, Li R, Pei J, Wen Y, Li Y, Xing X (2020) Automobile exhaust purification over g-C3N4 catalyst material. Mater Chem Phys 247:122867

    Google Scholar 

  • Cape Cod Curmudgeon (2018) 1941 Henry Ford’s Soybean Car, Image retrieved from https://todayinhistory.blog/2018/08/13/august-13-1941-henry-fords-soybean-car/. Accessed 12 May 2021

  • Dahlke B, Larbig H, Scherzer HD, Poltrock R (1998) Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plast 34(4):361–379

    Article  CAS  Google Scholar 

  • Dey S, Mehta NS (2020) Automobile pollution control using catalysis. Resour Environ Sustain:100006

    Google Scholar 

  • Durowaye SI, Sekunowo OI, Lawal AI, Ojo OE (2017) Development and characterisation of iron millscale particle reinforced ceramic matrix composite. J Taibah Univ Sci 11(4):634–644

    Article  Google Scholar 

  • Falsafi J, Rosochowska M, Jadhav P, Tricker D (2017) Lower Cost Automotive Piston from 2124/SiC/25p Metal-Matrix Composite. SAE Int J Engines 10(4):1984–1992

    Article  Google Scholar 

  • Faruk O, Tjong J, Sain M (Eds.) (2017) Lightweight and sustainable materials for automotive applications. CRC Press

    Google Scholar 

  • Flax AM (1991) Capabilities of sheet molding composite in the automotive industry: an overview. SAE Technical Paper 910383

    Google Scholar 

  • Foard JHD, Rollason D, Thite AN, Bell C (2019) Polymer composite Belleville springs for an automotive application. Compos Struct 221:110891

    Google Scholar 

  • Fu S, Sun Z, Huang P, Li Y, Hu N (2019) Some basic aspects of polymer nanocomposites: A critical review. Nano Mater Sci 1(1):2–30

    Google Scholar 

  • Ghassemieh E (2011) Materials in automotive application, state of the art and prospects. New Trends Develop Autom Indust 20:364–394

    Google Scholar 

  • Gowda TY, Sanjay MR, Bhat KS, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: An overview. Cogent Eng 5(1):1446667

    Google Scholar 

  • Hassan T, Salam A, Khan A, Khan SU, Khanzada H, Wasim M, Kim IS (2021) Functional nanocomposites and their potential applications: a review. J Polymer Res 28(2):1–22

    Google Scholar 

  • Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. Jom 58(11):80–86

    Article  CAS  Google Scholar 

  • Hovorun TP, Berladir KV, Pererva VI, Rudenko SG, Martynov AI (2017) Modern materials for automotive industry. J Eng Sci 4(2)

    Google Scholar 

  • Ilanko AK, Vijayaraghavan S (2016) Wear behavior of asbestos-free eco-friendly composites for automobile brake materials. Friction 4(2):144–152

    Article  CAS  Google Scholar 

  • Ishikawa T, Amaoka K, Masubuchi Y, Yamamoto T, Yamanaka A, Arai M, Takahashi J (2018) Overview of automotive structural composites technology developments in Japan. Compos Sci Technol 155:221–246

    Article  CAS  Google Scholar 

  • Jasonstathamnz (2015) why should I buy second hand car parts?, Image retrieved from https://jasonstathamnz.wordpress.com/2015/07/14/why-should-i-buy-second-hand-car-parts/. Accessed 25 May 2021

  • Jena H (2019) Study of tribo-performance and application of polymer composite. In: Automotive Tribology (pp. 65–99). Springer, Singapore

    Google Scholar 

  • Kasar AK, Gupta N, Rohatgi PK, Menezes PL (2020) A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties. Jom 72(6):2340–2351

    Article  CAS  Google Scholar 

  • Kausar A (2018) Polyurethane composite foams in high-performance applications: A review. Polym-Plast Technol Eng 57(4):346–369

    Article  CAS  Google Scholar 

  • Ke J, Wu ZY, Liu YS, Xiang Z, Hu XD (2020) Design method, performance investigation and manufacturing process of composite helical springs: A review. Compos Struct 252, 112747

    Google Scholar 

  • Khatkar V, Behera BK, Manjunath RN (2020) Textile structural composites for automotive leaf spring application. Compos Part B Eng 182:107662

    Google Scholar 

  • Kim H, Kim C, Kim S, Kim B, Lim C (2019) Novel steel and aramid/phenol composite gear for a transmission with optimum design and FEM vibration analysis. Int J Automot Technol 20(4):749–754

    Article  Google Scholar 

  • Krishnan GS, Kumar JP, Shanmugasundar G, Vanitha M, Sivashanmugam N (2021) Investigation on the alkali treatment of Demostachya Bipinnata fibers for automobile applications-A green composite. Mater Today Proc 43:828–831

    Google Scholar 

  • Kumar TV, Balaji S, Babu KM, Gautham KH (2015) Performance of magnetic fuel induction technology to reduce the exhaust emission. ARPN J Eng Appl Sci 10 (14)

    Google Scholar 

  • Kumar M, Kumar A (2020) Sliding wear performance of graphite reinforced AA6061 alloy composites for rotor drum/disk application. Mater Today Proc 27:1972–1976

    Google Scholar 

  • Kumar Rajak D, Pagar DD, Pruncu CI (2021) Failure Mechanisms of Biobased Composites: Biobased Composites: Processing, Characterization, Properties, and Applications:87–106

    Google Scholar 

  • Kurihara Y (1995) Polymer matrix composite materials in automobile industries. Adv Compos Mater 4(3):209–219

    Article  CAS  Google Scholar 

  • Li Y, Xing X, Pei J, Li R, Wen Y, Cui S, Liu T (2020) Automobile exhaust gas purification material based on physical adsorption of tourmaline powder and visible light catalytic decomposition of g-C3N4/BiVO4. Ceram Int 46(8):12637–12647

    Article  CAS  Google Scholar 

  • Liu J, Xian Y, Cao D, Su J, Liao W, Ding M, Su Z (2016) Study of the design and torsion performance for carbon fiber composite material automobile drive shaft. In: Society of automotive engineers (SAE)-China congress (pp 303–312). Springer, Singapore

    Google Scholar 

  • Macke A, Schultz BF, Rohatgi PK, Gupta N (2013) Metal matrix composites for automotive applications. In: Advanced composite materials for automotive applications: structural integrity and crashworthiness, pp 311–344

    Google Scholar 

  • Mallick PK (Ed) (2020) Chapter 1—Overview. In Materials, design and manufacturing for lightweight vehicles (pp. 1–36). Woodhead publishing

    Google Scholar 

  • Mansor MR, Akop MZ (2020) Polymer nanocomposites smart materials for energy applications. In: Polymer nanocomposite-Based smart materials (pp. 157–176). Woodhead Publishing

    Google Scholar 

  • Johannes Maximilian—Own work (2020). Trabant 601, GFDL 1.2, Image retrieved from https://commons.wikimedia.org/w/index.php?curid=87864157 . Accessed 12 May 2021

  • Menezes PL, Rohatgi PK, Lovell MR (2012) Self-lubricating behavior of graphite reinforced metal matrix composites. In: Green tribology (pp. 445–480). Springer, Berlin, Heidelberg

    Google Scholar 

  • Menezes PL, Rohatgi PK, Lovell MR (2012) Studies on the tribological behavior of natural fiber reinforced polymer composite. In: Green tribology (pp. 329–345). Springer, Berlin, Heidelberg

    Google Scholar 

  • Menezes PL, Reeves CJ, Rohatgi PK, Lovell MR (2013) Self-lubricating behavior of graphite-reinforced composites. In: Tribology for scientists and engineers (pp. 341–389). Springer, New York, NY

    Google Scholar 

  • Menezes PL, Rohatgi PK, Omrani E (eds) (2018) Self-Lubricating Composites (pp. 75–103). Springer, Berlin

    Google Scholar 

  • Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polymer Sci

    Google Scholar 

  • Muhammad A, Rahman MR, Baini R, Bakri MK B (2021) Applications of sustainable polymer composites in automobile and aerospace industry. In: Advances in sustainable polymer composites (pp 185–207). Woodhead Publishing

    Google Scholar 

  • Muthalagu R, Murugesan J, Kumar SS, Babu BS (2020) Tensile attributes and material analysis of kevlar and date palm fibers reinforced epoxy composites for automotive bumper applications. Mater Today Proc

    Google Scholar 

  • Oliver-Ortega H, Julian F, Espinach FX, Tarrés Q, Ardanuy M, Mutjé P (2019) Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. J Clean Prod 226:64–73

    Article  CAS  Google Scholar 

  • Omrani E, Rohatgi PK, Menezes PL (2017) Tribology and applications of self-lubricating materials. CRC Press

    Google Scholar 

  • Padmavathy S, Kamalakannan R, Manikandan A (2020) Tribological and mechanical properties of AA6061 reinforced with SiC and graphite for automobile applications. Mater Today Proc 21:24–29

    Google Scholar 

  • Panaitescu I, Koch T, Archodoulaki VM (2019) Accelerated aging of a glass fiber/polyurethane composite for automotive applications. Polym Testing 74:245–256

    Article  CAS  Google Scholar 

  • Patil A, Patel A, Purohit R (2017) An overview of polymeric materials for automotive applications. Mater Today Proc 4(2):3807–3815

    Google Scholar 

  • Perumal CI, Sarala R, Muthuraja R, Senthilraja R (2018) A review on characteristic of polymer composites with natural fiber used as a reinforcement material. Int J Res Appl Sci Eng Technol 6(1):1213–1217

    Google Scholar 

  • Peterson SC (2012) Evaluating corn starch and corn stover biochar as renewable filler in carboxylated styrene–butadiene rubber composites. J Elastomers Plast 44(1):43–54

    Article  CAS  Google Scholar 

  • Prasad SV, Kumar GA, Sai PY, Basha SV (2021) Design and fabrication of car door panel using natural fiber-reinforced polymer composites. Trends Manufact Eng Manag:331–343

    Google Scholar 

  • Prateemak (2012) Taken By Dr Pradeep Rohatgi aluminum graphite particle composite piston and cylinder liner UWM Center for Composite Materials, CC BY-SA 4.0, https://en.wikipedia.org/w/index.php?curid=62445252. Accessed 17 May 2021

  • Pujari S, Srikiran S (2019) Experimental investigations on wear properties of Palm kernel reinforced composites for brake pad applications. Defence Technol 15(3):295–299

    Google Scholar 

  • Rajak DK, Pagar DD, Kumar R, Pruncu CI (2019a) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Market Res 8(6):6354–6374

    CAS  Google Scholar 

  • Rajak DK, Pagar DD, Menezes PL, Linul E (2019b) Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 11(10):1667

    Article  CAS  Google Scholar 

  • Rajak DK, Wagh PH, Menezes PL, Chaudhary A, Kumar R (2020) Critical overview of coatings technology for metal matrix composites. J Bio Tribo-Corros 6(1):1–18

    Google Scholar 

  • Rajak DK, Menezes PL (2020) Application of metal matrix composites in engineering sectors. Encyclopaedia of Mater Compos Elsevier

    Google Scholar 

  • Ramachandra M, Abhishek A, Siddeshwar P, Bharathi V (2015) Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy. Proc Mater Sci 10:212–219

    Google Scholar 

  • Raut LB, Katu AR (2016) Experimental analysis of different compositions of carbon fiber/epoxy composite and its application in leaf spring. In: International conference on advanced technologies for societal applications techno-societal 2016 (pp. 699–707). Springer, Cham

    Google Scholar 

  • Raut LB, Jadhav SV, Jagadale VS, Swami V, Gavali SR, Gade SB (2020) Experimental investigation of basalt fiber/epoxy composite for automobile leaf spring. In: Techno-Societal (pp 777–787). Springer, Cham

    Google Scholar 

  • Rezaei F, Yunus R, Ibrahim NA, Mahdi EDOSCFRPCFCB (2008) Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polymer Plast Technol Eng 47(4):351–357

    Google Scholar 

  • Rohatgi PK, Menezes PL, Lovell MR (2012) Tribological properties of fly ash-based green friction products. In: Green tribology (pp 429–443). Springer, Berlin, Heidelberg

    Google Scholar 

  • Sadagopan P, Natarajan HK, Kumar P (2018) Study of silicon carbide-reinforced aluminum matrix composite brake rotor for motorcycle application. Int J Adv Manufact Technol 94(1):1461–1475

    Google Scholar 

  • Saleem M, Ashok Raj J, Sam Kumar GS, Akhila R (2020) Design and analysis of aluminium matrix composite spur gear. Adv Mater Process Technol:1–9

    Google Scholar 

  • Sandstrom PH (2002) U.S. Patent No. 6,391,945. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Schmitt J (2017) U.S. Patent No. 9,604,515. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Selwyn TS (2021) Formation, characterization and suitability analysis of polymer matrix composite materials for automotive bumper. Mater Today Proc 43:1197–1203

    Google Scholar 

  • Singh H, Brar GS (2018) Characterization and investigation of mechanical properties of composite materials used for leaf spring. Mater Today Proc 5(2):5857–5863

    Google Scholar 

  • Singh M, Bhandari D, Goyal K (2020) A review of the mechanical performance of nanoparticles reinforced aluminium matrix nanocomposites. Mater Today Proc

    Google Scholar 

  • Sinha M, Tyagi RK, Bajpai PK (2018) Weight reduction of structural members for ground vehicles by the introduction of FRP composite and its implications. In Proceedings of the international conference on modern research in aerospace engineering (pp 277–290). Springer, Singapore

    Google Scholar 

  • Stark N, Cai Z (2021) Wood-based composite materials: panel products, glued laminated timber, structural composite lumber, and wood–nonwood composites. Chapter 11 in FPL-GTR-282, 11–1

    Google Scholar 

  • Stojanović B, Ivanović L (2015) Application of aluminium hybrid composites in automotive industry. Tehnički Vjesnik 22(1):247–251

    Google Scholar 

  • Suresh G, Srinivasan T, Bernard SS, Vivek S, Akash RM, Baradhan G, Anand B (2020) Analyzing the mechanical behavior of IPN composite drive shaft with E-glass fiber reinforcement. Mater Today Proc:1107–111

    Google Scholar 

  • UFP Technologies (2021) Case study: automotive interior trim components. Image retrieved from https://www.ufpt.com/resource-center/automotive-interior-trim-components/. Accessed 25 May 2021

  • Tiruvenkadam N, Thyla PR, Senthilkumar M, Bharathiraja M, Murugesan A (2015) Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines. Energy Convers Manage 98:440–448

    Article  CAS  Google Scholar 

  • Todor MP, Kiss I (2016) Systematic approach on materials selection in the automotive industry for making vehicles lighter, safer and more fuel–efficient. Appl Eng Lett 1(4):91–97

    Google Scholar 

  • Tony Borroz (2009) ‘June 30, 1953: Corvette Adds Some Fiber, Flair to American Road’, The very first Corvettes roll off the assembly line at the Chevrolet plant in Flint, Michigan. Image retrieved from, https://www.wired.com/2009/06/dayintech-0630/. Accessed 12 Apr 2021

  • Verma D, Sharma S (2017) Green biocomposites: a prospective utilization in automobile industry. In: Green biocomposites (pp 167–191). Springer, Cham

    Google Scholar 

  • Wagh PH, Pagar DD (2018) Investigation of mechanical and tribological behavior of composite material filled with black epoxy resin and aluminium tri-hydroxide using reinforcement of glass fiber. In: AIP Conference Proceedings (vol. 2018, No. 1, p. 020025). AIP Publishing LLC

    Google Scholar 

  • White LJ (2013) The automobile industry since 1945. Harvard University Press

    Google Scholar 

  • Wilhelm M (1993) Materials used in automobile manufacture-current state and perspectives. Le J De Phys IV 3(C7):C7-31

    Google Scholar 

  • Wu Q, Miao WS, Gao HJ, Hui D (2020a) Mechanical properties of nanomaterials: a review. Nanotechnol Rev 9(1):259–273

    Google Scholar 

  • Wu L, Chen L, Fu H, Jiang Q, Wu X, Tang Y (2020b) Carbon fiber composite multistrand helical springs with adjustable spring constant: design and mechanism studies. J Market Res 9(3):5067–5076

    CAS  Google Scholar 

  • Ye H, Liu C, Yan K (2021) Optimization design of the structure of the automobile bonnet made of fiber composite material. In: Proceedings of China SAE congress 2019: selected papers (pp. 675–693). Springer, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajak, D.K., Pagar, D.D., Behera, A., Menezes, P.L. (2022). Role of Composite Materials in Automotive Sector: Potential Applications. In: Kumar, V., Agarwal, A.K., Jena, A., Upadhyay, R.K. (eds) Advances in Engine Tribology. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8337-4_10

Download citation

Publish with us

Policies and ethics