Skip to main content

Generation and Maturation of Macroglia in the Central Nervous System

  • Chapter
  • First Online:
The Biology of Glial Cells: Recent Advances

Abstract

Nervous system development is a dynamic process that follows a highly constrained and genetically organised pattern leading to the generation of a complex framework for guiding human behaviour. Generation of an appropriate number of neurons and glia at the correct time and location is crucial for the proper development of the neural circuitry and mental functions. The neural epithelial cells (NEPs) undergo a stereotyped programme of cell division to generate both neurons and macroglia through progressive differentiation and commitment. A number of evolutionarily conserved signalling factors direct the progenitors to decide whether to self-renew or generate neurons or various glial cells via activating a specified programme of transcription factor expression in target cells. In the present chapter, we will provide an overview regarding the cellular and molecular basis of the generation of various macroglia (astrocytes, oligodendrocytes and NG2 glia) as well as the developmental mechanisms that direct these cells to acquire specific glial identities in the developing central nervous system. This will strengthen our understanding to explore how these mechanisms can be used to design curative therapeutic strategies for various neurodevelopmental disorders and promote the regeneration and repair of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre A, Gallo V (2004) Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 24(46):10530–10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre AA, Chittajallu R, Belachew S, Gallo V (2004) NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J Cell Biol 165:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akdemir ES, Huang AY, Deneen B (2020) Astrocytogenesis: where, when, and how. F1000 Res 9:233

    Article  CAS  Google Scholar 

  • Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationship: for better and for worse. Trends Neurosci 34:76–87

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–414. https://doi.org/10.1038/nature11059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  CAS  PubMed  Google Scholar 

  • Anthony TE, Heintz N (2007) The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J Comp Neurol 500:368–383

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Navarrete M (2010) Glial cells in neuronal network function. Philos Trans R Soc Lond B Biol Sci 365:2375–2381

    Article  PubMed  PubMed Central  Google Scholar 

  • Azim K, Raineteau O, Butt AM (2012) Intraventricular injection of FGF2 promotes generation of oligodendrocyte-lineage cells in the postnatal and adult forebrain. Glia 60:1977–1990

    Article  PubMed  Google Scholar 

  • Babikian T, Prins ML, Cai Y, Barkhoudarian G, Hartonian I, Hovda DA, Giza CC (2010) Molecular and physiological responses to juvenile traumatic brain injury: focus on growth and metabolism. Dev Neurosci 32:431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC (2002) Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol 61:197–211

    Article  PubMed  Google Scholar 

  • Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH (2002) Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is sufficient for astrocytoma formation. Mol Cell Biol 22(14):5100–5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal R, Warrington AE, Gard A, Ranscht B, Pfeiffer S (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24:548–557

    Article  CAS  PubMed  Google Scholar 

  • Barnabé-Heider F, Wasylnka JA, Fernandes KJ, Porsche C, Sendtner M, Kaplan DR, Miller FD (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48(2):253–265

    Article  PubMed  CAS  Google Scholar 

  • Baron W, Metz B, Bansal R, Hoekstra D, de Vries H (2000) PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: regulation of proliferation and differentiation by multiple intracellular signaling pathways. Mol Cell Neurosci 15:314329

    Article  CAS  Google Scholar 

  • Barres BA, Raff MC (1999) Axonal control of oligodendrocyte development. J Cell Biol 147:1123–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barres BA, Schmid R, Sendnter M, Raff MC (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118:283–295

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G, Lu PH, Heydari P, Couvrette A, Lee GJ, Kalashyan G, Freeman F, Grinstead JW, Villablanca P, Finn JP, Mintz J (2012) Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals. Biol Psychiatry 72:1026–1034

    Article  PubMed  Google Scholar 

  • Bautch VL, James JM (2009) Neurovascular development: the beginning of a beautiful friendship. Cell Adh Migr 3:199–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1992) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14:83–144

    Google Scholar 

  • Belachew S, Chittajallu R, Aguirre AA, Yuan X, Kirby M, Anderson S, Gallo V (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161:169–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender P, Jabs R, Steinhauser C (2020) Properties of human astrocytes and NG2 glia. Glia 68:756–767

    Article  Google Scholar 

  • Bergles DE, Jabs R, Steinhauser C (2010) Neuron-glia synapses in the brain. Brain Res Rev 63(1–2):130–137

    Article  CAS  PubMed  Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191

    Article  CAS  PubMed  Google Scholar 

  • Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME (1997) Regulation of gliogenesis in the central nervous system by the JAK/STAT signalling pathway. Science 278:477–483

    Article  CAS  PubMed  Google Scholar 

  • Briscoe J, Novitch BG (2008) Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philos Trans R Soc B 363:57–70

    Article  CAS  Google Scholar 

  • Bronstein R, Kyle J, Abraham AB, Tsirka SE (2017) Neurogenic to gliogenic fate transition perturbed by loss of HMGB2. Front Mol Neurosci 10:153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bujalka H, Koenning M, Jackson S, Perreau VM, Pope B, Hay CM, Mitew S, Hill AF, Lu QR, Wegner M, Srinivasan R (2013) MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes. PLoS Biol 11:e1001625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burne JF, Staple JK, Raff MC (1996) Glial cells are increased proportionally in transgenic optic nerves with increased numbers of axons. J Neurosci 16:2064–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns KA, Murphy B, Danzer SC, Kuan CY (2009) Developmental and post-injury cortical gliogenesis: a genetic fate mapping study with nestin-CreER mice. Glia 57(10):1115–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86. https://doi.org/10.1016/j.ijdevneu.2003.12.008

    Article  PubMed  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calver AR, Hall AC, Yu WP (1998) Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20:869–882

    Article  CAS  PubMed  Google Scholar 

  • Catalani A, Sabbatini M, Consoli C, Cinque C, Tomassoni D, Azmitia E, Angelucci L, Amenta F (2002) Glial fibrillary acidic protein immunoreactive astrocytes in developing rat hippocampus. Mech Ageing Dev 123:481–490

    Article  CAS  PubMed  Google Scholar 

  • Cebolla B, Vallejo M (2006) Nuclear factor-1 regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J Neurochem 97:1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Cesetti T, Obernier K, Bengtson CP, Fila T, Mandl C, Holzl-Wenig G, Worner K, Eckstein V, Ciccolini F (2009) Analysis of stem cell lineage progression in the neonatal subventricular zone identifies EGFR+/ NG2− cells as transit-amplifying precursors. Stem Cells 27:1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Chandross KJ, Cohen RI, Paras P, Gravel M, Braun PE, Hudson LD (1999) Identification and characterization of early glial progenitors using a transgenic selection strategy. J Neurosci 19:759–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitnis A, Henrique D, Lewis J, Ish-Horowicz D, Kintner C (1995) Primary neurogenesis in Xenopus embryos regulated by a homologue of the drosophila neurogenic gene Delta. Nature 375:761-766.C

    Article  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433. https://doi.org/10.1016/j.cell.2004.12.020

    Article  CAS  PubMed  Google Scholar 

  • das Neves L, Duchala CS, Godinho F, Haxhiu MA, Colmenares C, Macklin WB, Campbell CE, Butz KG, Gronostajski RM (1999) Disruption of the murine nuclear factor I-A gene (Nf1a) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci U S A 96(21):11946–11951

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson MRL, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488

    Article  CAS  PubMed  Google Scholar 

  • Deneen B, Ho R, Lukaszewicz A, Hochstim CJ, Gronostajski RM, Anderson DJ (2006) The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52:953–968. https://doi.org/10.1016/j.neuron.2006.11.019

    Article  CAS  PubMed  Google Scholar 

  • Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen regulated transcriptional network. Development 135(15):2489–2503

    Article  CAS  PubMed  Google Scholar 

  • Dimou L, Gallo V (2015) NG2 glia and their functions in the central nervous system. Glia 63(8):1429–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimou L, Gotz M (2014) Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 94(3):709–737

    Article  CAS  PubMed  Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the grey and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100βs double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793(6):1008–1022

    Article  CAS  PubMed  Google Scholar 

  • Duong TA, Hoshiba Y, Saito K, Kawasaki K, Ichikawa Y, Matsumoto N, Shinmyo Y, Kawasaki H (2019) FGF signalling directs the cell fate switch from neurons to astrocytes in the developing mouse cerebral cortex. J Neurosci 39(31):6081–6094

    Article  CAS  Google Scholar 

  • Eibaz B, Popko B (2019) Molecular control of oligodendrocyte development. Trends Neurosci 42(4):263–277

    Article  CAS  Google Scholar 

  • Elbaz B, Aaker JD, Isaac S, Kolarzyk A, Brugarolas P, Eden A, Popko B (2018) Phosphorylation state of ZFP24 controls oligodendrocyte differentiation. Cell Rep 23:2254–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330:779–782

    Article  CAS  PubMed  Google Scholar 

  • Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, Ibrahim A, Ligon KL, Rowitch DH, Barres BA (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery B, Lu QR (2015) Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb Perspect Biol 7(9):a020461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ernst M, Jenkins BJ (2004) Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 20:23–32

    Article  CAS  PubMed  Google Scholar 

  • Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L, Hattori D, Ge W, Shen Y, Wu H, ten Hoeve J (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK/STAT signalling. Development 132:3345–3356

    Article  CAS  PubMed  Google Scholar 

  • Ferent J, Zimmer C, Durbec P, Ruat M, Traiffort E (2013) Sonic hedgehog signaling is a positive oligodendrocyte regulator during demyelination. J Neurosci 33:1759–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T, Kullander K (2009) Neuron-glia communication via EphA4/Ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12(10):1285–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flügge G, Araya-Callis C, Garea-Rodriguez E, Stadelmann-Nessler C, Fuchs E (2014) NDRG2 as a marker protein for brain astrocytes. Cell Tissue Res 357(1):31–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fogarty M, Richardson WD, Kessaris N (2005) A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin-from mechanism to experimental medicines. Nat Rev Neurosci 18:753–769

    Article  CAS  PubMed  Google Scholar 

  • Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330(6005):774–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157(1):80–94

    Article  CAS  PubMed  Google Scholar 

  • Gallo V, Deneen B (2014) Glial development: the crossroads of regeneration and repair in the CNS. Neuron 83(2):283–308. https://doi.org/10.1016/j.neuron.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7(11):1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Gauthier I, Bukach C (2007) Should we reject the expertise hypothesis? Cognition 103:322–330

    Article  PubMed  Google Scholar 

  • Ge WP, Jia JM (2016) Local production of astrocytes in the cerebral cortex. Neuroscience 323:3–9

    Article  CAS  PubMed  Google Scholar 

  • Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484(7394):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman SA, Kuypers NJ (2015) How to make an oligodendrocyte. Developmemt 142:3983–3995

    CAS  Google Scholar 

  • Goldman SA, Schanz S, Windrem MS (2008) Stem cell-based strategies for treating pediatric disorders of myelin. Hum Mol Genet 17:R76–R83

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2009) Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27:2032–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalan SM, Wilczynska KM, Konik BS, Bryan L, Kordula T (2006) Nuclear factor-1-X regulates astrocyte specific expression of the alpha 1-antichymotrypsin and glial fibrillary acidic protein genes. J Biol Chem 281:13126–13133

    Article  CAS  PubMed  Google Scholar 

  • Gronostajski RM (2000) Roles of the NFI/CTF gene family in transcription and development. Gene 249:31–45

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Ma J, McCauley E, Bannerman P, Pleasure D (2009) Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo. J Neurosci 29:72567270

    Article  CAS  Google Scholar 

  • Hack M, Flannery DJ, Schluchter M, Cartar L, Borawski E, Klein N (2002) Outcomes in young adulthood for very-low-birth-weight infants. New Engl J Med 346:149–157

    Article  PubMed  Google Scholar 

  • Haim LB, Rowitch DH (2017) Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 18(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC, Heron S, Márkus NM, McQueen J, Hampton DW, Torvell M, Tiwari SS (2017) Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 8(1):1–8

    Article  Google Scholar 

  • He F, Ge W, Martinowich K, Becker-Catania S, Coskun V, Zhu W, Wu H, Castro D, Guillemot F, Fan G, De Vellis J (2005) A positive autoregulatory loop of JAK/STAT signalling controls the onset of astrogliogenesis. Nat Neurosci 8:1025–1036

    Article  CAS  Google Scholar 

  • He L, Lu QR (2013) Coordinated control of oligodendrocyte development by extrinsic and intrinsic signaling cues. Neurosci Bull 29:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J, Koseki H, Vidal M, Gotoh Y (2009) Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63:600–613

    Article  CAS  PubMed  Google Scholar 

  • Jacob C, Christen CN, Pereira JA, Somandin C, Baggiolini A, Lötscher P, Ozçelik M, Tricaud N, Meijer D, Yamaguchi T, Matthias P (2011) HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat Neurosci 14:429–436

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Nardelli J (2016) Cellular and molecular introduction to brain development. Neurobiol Dis 92:3–17

    Article  CAS  PubMed  Google Scholar 

  • Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB, Graham BH, Foster AE, Novitch BG, Gronostajski RM, Deneen B (2012) Sox9 and NFIA coordinate a transcriptional regulatory Cascade during the initiation of gliogenesis. Neuron 74(1):79–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) Ng2+ cns glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68:668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179

    Article  CAS  PubMed  Google Scholar 

  • Koenning M, Jackson S, Hay CM, Faux C, Kilpatrick TJ, Willingham M, Emery B (2012) Myelin gene regulatory factor is required for maintenance of myelin and mature oligodendrocyte identity in the adult CNS. J Neurosci 32:12528–12542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komitova M, Zhu X, Serwanski DR, Nishiyama A (2009) Ng2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol 512:702–716

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriegstein A, Alvarez-Byulla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM, Chakraborty C, Workman G, Weaver M, Sage EH, Barres BA (2011) Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A 108:E440–E449. https://doi.org/10.1073/pnas.1104977108

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuspert M, Hammer A, Bosl MR, Wegner M (2011) Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. Nucleic Acids Res 39:1280–1293

    Article  PubMed  CAS  Google Scholar 

  • Larson VA, Zhang Y, Bergles DE (2016) Electrophysiological properties of NG2+ cells: matching physiological studies with gene expression profiles. Brain Res 1638:138–160

    Article  CAS  PubMed  Google Scholar 

  • Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Lee B, Ruiz EC, Pfaff SL (2005) Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev 19:282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47

    Article  CAS  PubMed  Google Scholar 

  • Levison SW, Chuang C, Abramson BJ, Goldman JE (1993) The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development 119(3):611–622

    Article  CAS  PubMed  Google Scholar 

  • Li H, de Faria JP, Andrew P, Nitarska J, Richardson WD (2011) Phosphorylation regulates OLIG2 cofactor choice and the motor neuron-oligodendrocyte fate switch. Neuron 69:918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, He Y, Richardson WD, Casaccia P (2009) Two-tier transcriptional control of oligodendrocyte differentiation. Curr Opin Neurobiol 19(5):479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Lu Y, Smith HK, Richardson WD (2007) Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 27:14375–14382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Li J, Marin-Husstege M, Kageyama R, Fan Y, Gelinas C, Casaccia-Bonnefil P (2006) A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO J 25:4833–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Cai J, Hu X, Tan M, Qi Y, German M, Rubenstein J, Sander M, Qiu M (2003) Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 130:6221–6231

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wu Y, Lee JC, Xue H, Pevny LH, Kaprielian Z, Rao MS (2002) Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia 40(1):25–43

    Article  PubMed  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7:93–102

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Esposito G, Scuderi C, Steardo L, Delli-Bovi LC, Hecht JL, Dickinson BC, Chang CJ, Mori T, Sheen V (2011) S100B and APP promote a gliocentric shift and impaired neurogenesis in down syndrome neural progenitors. PLoS One 6:e22126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86

    Article  CAS  PubMed  Google Scholar 

  • Lu QR, Yuk DI, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB, McDermott K (1994) Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia 11(3):211–226

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Chen ZF, Barrantes IB, de la Pompa JL, Anderson DJ (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    Article  CAS  PubMed  Google Scholar 

  • Magavi S, Friedmann D, Banks G, Stolfi A, Lois C (2012) Coincident generation of pyramidal neurons and protoplasmic astrocytes in neocortical columns. J Neurosci 32(14):4762–4772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnus TI, Carmen J, Deleon J, Xue H, Pardo AC, Lepore AC, Mattson MP, Rao MS, Maragakis NJ (2008) Adult glial precursor proliferation in mutant SOD1G93A mice. Glia 56(2):200–208

    Article  PubMed  Google Scholar 

  • Marshall CAG, Suzuki SO, Goldman JE (2003) Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 43:52–61

    Article  PubMed  Google Scholar 

  • Matuzelski E, Bunt J, Harkins D, Lim JW, Gronostajski RM, Richards LJ, Harris L, Piper M (2017) Transcriptional regulation of Nfix by NFIB drives astrocytic maturation within the developing spinal cord. Dev Biol 432:286–297

    Article  CAS  PubMed  Google Scholar 

  • McTigue DM, Tripathi RB (2008) The life, death and replacement of oligodendrocytes in the adult CNS. J Neurochem 107(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Medvedev N, Popov V, Henneberger C, Kraev I, Rusakov DA, Stewart MG (2014) Glia selectively approach synapses on thin dendritic spines. Philos Trans R Soc Lond B Biol Sci 369(1654):20140047

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 22:74–85

    Article  CAS  PubMed  Google Scholar 

  • Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2013) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto Y, Yamauchi J, Tanoue A (2008) Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J Neurosci 28:8326–8337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molofsky AV, Deneen B (2015) Astrocyte development: a guide for the perplexed. Glia 63:1320–1329

    Article  PubMed  Google Scholar 

  • Molofsky AV, Krenick R, Ullian E, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocyte and disease: a neurodevelopmental perspective. Genes Dev 26:891–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  CAS  PubMed  Google Scholar 

  • Naik A, Patro N, Seth P, Patro IK (2017) Intra-generational protein malnutrition impairs temporal astrogenesis in rat brain. Biology Open 6:931–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naik AA, Patro IK, Patro N (2015) Slow physical growth, delayed reflex ontogeny, and permanent behavioral as well as cognitive impairments in rats following intra-generational protein malnutrition. Front Neurosci 9:446

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signalling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482

    Article  CAS  PubMed  Google Scholar 

  • Namihira M, Kohyama J, Semi K, Sanosaka T, Deneen B, Taga T, Nakashima K (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16:245–255

    Article  CAS  PubMed  Google Scholar 

  • Namihira M, Nakashima K, Taga T (2004) Developmental stage dependent regulation of DNA methylation and chromatin modification in an immature astrocyte specific gene promoter. FEBS Lett 572:184–188

    Article  CAS  PubMed  Google Scholar 

  • Nave KA (2010) Oligodendrocytes and the “micro brake” of progenitor cell proliferation. Neuron 65:577–579

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9–22

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB (1996a) Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res 43:315–330

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB (1996b) Co-localization of Ng2 proteoglycan and pdgf alpha-receptor on O2a progenitor cells in the developing rat brain. J Neurosci Res 43:299–314

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Yang Z, Butt A (2005) Astrocytes and NG2-glia: what's in a name? J Anat 207:687–693

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu J, Mei F, Wang L, Liu S, Tian Y, Mo W, Li H, Lu QR, Xiao L (2012) Phosphorylated olig1 localizes to the cytosol of oligodendrocytes and promotes membrane expansion and maturation. Glia 60:1427–1436

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333:560–562

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144

    Article  CAS  PubMed  Google Scholar 

  • Novitch BG, Chen AI, Jessell TM (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31:773–789

    Article  CAS  PubMed  Google Scholar 

  • Orentas DM, Hayes JE, Dyer KL, Miller RH (1999) Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126:2419–2429

    Article  CAS  PubMed  Google Scholar 

  • Ortega JA, Radonjic NV, Zecevic N (2013) Sonic hedgehog promotes generation and maintenance of human forebrain Olig2 progenitors. Front Cell Neurosci 7:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patro N, Naik A, Patro I (2015) Differential temporal expression of S100β in developing rat brain. Front Cell Neurosci 9:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patro N, Naik AA, Patro IK (2019) Developmental changes in oligodendrocyte genesis, myelination, and associated behavioral dysfunction in a rat model of intra-generational protein malnutrition. Mol Neurobiol 56(1):595–610

    Article  CAS  PubMed  Google Scholar 

  • Price J, Thurlow L (1988) Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104(3):473–482

    Article  CAS  PubMed  Google Scholar 

  • Pringle NP, Yu WP, Howell M, Colvin JS, Ornitz DM, Richardson WD (2003) Fgfr3 expression by astrocytes and oligodendrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 130:93–102

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, Rao M, Sussel L, Rubenstein J, Qiu M (2001) Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128:2723–2733

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cell. Neuron 28:69–80

    Article  CAS  PubMed  Google Scholar 

  • Rice D, Barone S Jr (2000) Critical periods of vulnerability for the nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533

    PubMed  PubMed Central  Google Scholar 

  • Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson WD, Pringle N, Mosley MJ, Westermark B, Dubois-Dalcq M (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53:309–319

    Article  CAS  PubMed  Google Scholar 

  • Richardson WD, Young KM, Tripathi RB, McKenzie I (2011) Ng2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) Pdgfra/ng2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Robertson CP, Braun MM, Roelink H (2004) Sonic hedgehog patterning in chick neural plate is antagonized by a Wnt3-like signal. Dev Dyn 229:510–519

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SS, Powell BL, Chan JR (2007) Receiving mixed signals: uncoupling oligodendrocyte differentiation and myelination. Cell Mol Life Sci 64:3059–3068

    Article  CAS  PubMed  Google Scholar 

  • Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409–419

    Article  CAS  PubMed  Google Scholar 

  • Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468:214–222

    Article  CAS  PubMed  Google Scholar 

  • Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691–5698

    Article  CAS  PubMed  Google Scholar 

  • Sakry D, Karram K, Trotter J (2011) Synapses between NG2 glia and neurons. J Anat 219(1):2–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166

    Article  CAS  PubMed  Google Scholar 

  • Savtchouk I, Volterra A (2018) Gliotransmission: beyond black and white. J Neurosci 38(1):14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiweck J, Eickholt BJ, Murk K (2018) Important shapeshifter: mechanisms allowing astrocytes to respond to the changing nervous system during development, injury and disease. Front Cell Neurosci 12:261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sellers DL, Maris DO, Horner PJ (2009) Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury. J Neurosci 29:6722–6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks or maturation and vulnerability to injury across species. Prog Neurobiol 106-107:1–16

    Article  PubMed  Google Scholar 

  • Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci 17:9212–9219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim FJ, McClain CR, Schanz SJ, Protack TL, Windrem MS, Goldman SA (2011) CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol 29:934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan SA, Barres BA (2014) Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 27:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83:311–327

    Article  CAS  PubMed  Google Scholar 

  • Spassky N, Heydon K, Mangatal A, Jankovski A, Olivier C, Queraud-Lesaux F, Goujet-Zalc C, Thomas JL, Zalc B (2001) Sonic hedgehog-dependent emergence of oligodendrocytes in the telencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGFR alpha signalling. Development 128:4993–5004

    Article  CAS  PubMed  Google Scholar 

  • Staugaitis SM, Zerlin M, Hawkes R, Levine JM, Goldman JE (2001) Aldolase C/Zebrin II expression in the neonatal rat forebrain reveals cellular heterogeneity within the subventricular zone and early astrocyte differentiation. J Neurosci 21(16):6195–6205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, Litwack ED, Richards LJ, Gronostajski RM (2005) The transcription factor gene Nf1b is essential for both lung maturation and brain development. Mol Cell Biol 25:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles J (2017) Principles of brain development. Wiley Interdiscip Rev Cogn Sci 8:1–2

    Article  Google Scholar 

  • Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Stogsdill JA, Ramirez J, Liu D, Kim YH, Baldwin KT, Enustun E, Ejikeme T, Ji RR, Eroglu C (2017) Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551(7679):192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolt CC, Schlierf A, Lommes P, Hillgartner S, Werner T, Kosian T, Sock E, Kessaris N, Richardson WD, Lefebvre V, Wegner M (2006) SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell 11:697–709

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376

    Article  CAS  PubMed  Google Scholar 

  • Swiss VA, Nguyen T, Dugas J, Ibrahim A, Barres B, Androulakis IP, Casaccia P (2011) Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. PLoS One 6:e18088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szu JI, Binder DK (2016) The role of astrocytic Aquaporin-4 in synaptic plasticity and learning and memory. Front Integr Neurosci 10:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi T, Misson JP, Caviness VS Jr (1990) Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis. J Comp Neurol 302:15–28

    Article  CAS  PubMed  Google Scholar 

  • Takouda BJ, Katada S, Nakashima K (2017) Emerging mechanisms underlying astrogenesis in the developing mammalian brain. Proc Jpn Acad Sci B93:386–398

    Article  CAS  Google Scholar 

  • Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, Stiles CD, Rowitch DH, Richardson WD (2001) Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128:2545–2554

    Article  CAS  PubMed  Google Scholar 

  • Tidyman WE, Rauen KA (2009) The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 19:230–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tien AC, Tsai HH, Molofsky AV, McMahon M, Foo LC, Kaul A, Dougherty JD, Heintz N, Gutmann DH, Barres BA, Rowitch DH (2012) Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development 139(14):2477–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RB, Clarke LE, Burzomato V, Kessaris N, Anderson PN, Attwell D, Richardson WD (2011) Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J Neurosci 31(18):6809–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD (2010) Ng2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci 30:16383–16390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotter J, Karram K, Nishiyama A (2010) NG2 cells: properties, progeny and origin. Brain Res Rev 63(1–2):72–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa F, Marti E (2010) Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 239:69–76

    CAS  PubMed  Google Scholar 

  • Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45:55–67

    Article  CAS  PubMed  Google Scholar 

  • Van Tilborg E, de Theije CG, van Hal M, Wagenaar N, de Vries LS, Benders MJ, Rowitch DH, Nijboer CH (2017) Origin and dynamics of oligodendrocytes in the developing brain: implications for perinatal white matter injury. Glia 66:1–18

    Google Scholar 

  • Walsh CA, Morrow EM, Rubenstein JLR (2008) Autism and brain development. Cell 135:396–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise SP, Jones EG (1976) The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J Comp Neurol 168:313–343

    Article  CAS  PubMed  Google Scholar 

  • Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23

    Article  PubMed  Google Scholar 

  • Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda-Andoh T, Okano H, Nakashima K (2017) Hypoxia epigenetically confers astrocytic differentiation potential on human pluripotent cell-derived neural precursor cells. Stem Cell Rep 8(6):1743–1756

    Article  CAS  Google Scholar 

  • Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Chen Y, Kim B, Wang H, Zhao C, He X, Liu L, Liu W, Wu LM, Mao M, Chan JR (2013) Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 152(1–2):248–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuasa S (2001) Development of astrocytes in the mouse hippocampus as tracked by tenascin-C gene expression. Arch Histol Cytol 64:149–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang S-C (2001) Defining glial cells during CNS development. Nat Rev Neurosci 2:840–843

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ma Z, Zou W, Guo H, Liu M, Ma Y, Zhang L (2019) The appropriate marker for astrocytes: comparing distribution and expression of three astrocyte markers in different mouse cerebral regions. Biomed Res Int 2019:9605265

    PubMed  PubMed Central  Google Scholar 

  • Zhou M, Schools GP, Kimelberg HK (2006) Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J Neurophysiol 95:134–143

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61–73

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25:331–343

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Bergles DE, Nishiyama A (2008a) NG2 cells generate both oligodendrocytes and grey matter astrocytes. Development 135:145–157

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single ng2 cells. Development 138:745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Hill RA, Nishiyama A (2008b) Ng2 cells generate oligodendrocytes and grey matter astrocytes in the spinal cord. Neuron Glia Biol 4:19–26

    Article  PubMed  Google Scholar 

  • Zhu X, Zuo H, Maher BJ, Serwanski DR, LoTurco JJ, Lu QR, Nishiyama A (2012) Olig2-dependent developmental fate switch of NG2 cells. Development 139:2299–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonouzi M, Renzi M, Farrant M, Cull-Candy SG (2011) Bidirectional plasticity of calcium-permeable AMPA receptors in oligodendrocyte lineage cells. Nat Neurosci 14:1430–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Department of Biotechnology’s support through the DBT-National Initiative on Glial Cell Research in Health and Disease is gratefully acknowledged. We are thankful to the Department of Biotechnology, the Department of Science and Technology and the Indian Council of Medical Research, Govt. of India, for their financial support through various grants. We are thankful to Dr. Urmishree Bedamatta for critically evaluating the manuscript for its English.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patro, N., Patro, I. (2022). Generation and Maturation of Macroglia in the Central Nervous System. In: Patro, I., Seth, P., Patro, N., Tandon, P.N. (eds) The Biology of Glial Cells: Recent Advances. Springer, Singapore. https://doi.org/10.1007/978-981-16-8313-8_6

Download citation

Publish with us

Policies and ethics