Skip to main content

Date Palm Waste and Attempts to Use it as an Energy Source: State-of-the-Art

  • Conference paper
  • First Online:
Advances in Behavioral Based Safety

Abstract

Phoenix dactylifera, which is perhaps the world’s earliest known cultivated tree, is also one of the most cultivated at present. An estimated 105 million individuals of this species are currently standing in the world, covering about 3% of the world’s cultivated area and generating about 12 million metric tonnes of waste biomass per year. The latter represents one of the biggest streams of lignocellulosic waste which is remaining largely unutilized at present for want of economically viable utilization options. This paper assesses the potential of date palm waste and reviews the attempts made so far to extract energy from it in the form of solid, liquid, and gaseous fuels. The paper underscores the need for making greater efforts towards finding gainful solutions of the date palm waste problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zaid, A., & de Wet, P. F. (2002). Date palm cultivation. Abdelouahhab Zaid (ed.) Chapter II, FAO Plant production and protection.

    Google Scholar 

  2. Dowson, V. H. W. (1982). Date production and protection with special reference to North Africa and the Near East. FAO Technical Bull No, 35, 294.

    Google Scholar 

  3. Chevalier, A. (1952). Recherches sur les Phoenix africains. International Journal of Applied Botany and Tropical Agriculture, 355–356.

    Google Scholar 

  4. Agoudjil, B., Benchabaneb, A., Boudennec, A., Ibos, L., & Fois, M. (2011). Renewable Materials to Reduce Building Heat Loss: Characterization of Date Palm Wood. Energy and Buildings, 43, 491–497.

    Article  Google Scholar 

  5. El May, Y., Dorge, S., Jeguirim, M., Trouvé, G., & Said, R. (2012). Measurement of gaseous and particulate pollutants during combustion of date palm wastes for energy recovery. Aerosol and Air Quality Research, 12, 814–825.

    Article  Google Scholar 

  6. FAO STAT (2012). Food and Agriculture Organization of the United Nations. Retrieved Dec 2012, from http://faostat.fao.org/site/339/default.aspx.

  7. Pliny, C. (1489). The Elder. Trans. Historia Naturale, Book XIII, Cap. III, 3 columns on the palmae. Translated into Italian by Christofore Landioro Fiorentino and published by Bartolamio de Zani de Portesio.

    Google Scholar 

  8. Van Zyl, H. J. (1983). Date cultivation in South Africa. Fruit and Fruit Technology Research Institute, Department of Agriculture, Stellenbosch, RSA. Information Bulletin, 504, 26.

    Google Scholar 

  9. Soussa, A. (1969). Irrigation and civilisation in Oued Rafi din. First Part. Adib ed. Baghdad. Iraq.

    Google Scholar 

  10. Zaid, A., & Arias-Jiménez, E. J. (2002). Date palm cultivation. Food and Agricultural Organization of the United Nations, Rome. Retrieved April 2013, from http://www.fao.org/docrep/006/Y4360E/Y4360E00.HTM.

  11. Barreveld, W. H. (1993). Date palm products. Food and Agriculture Organization of the United Nations Rome, Fao Agricultural Services Bulletin No. 101. Retrieved April, 2013, from http://www.fao.org/docrep/t0681E/t0681e00.htm.

  12. Al-Juhaimi, F.Y., Hamand, S.H., Al-Ahaideb, I.S., Al-Otaibi, M.M., Nayeem-Shah, M., Abbasi, T., & Abbasi, S.A. (2013). An assessment of the feasibility of extracting clean energy as biogas from date palm waste, under review.

    Google Scholar 

  13. Bchini, H., Hsayoui, S., & Aloui, S. (2002). Gestion de la Matière Organique et Compostage des Palmes Sèches Dans le Milieu Oasien. Annales de l’INRAT, 75, 299–312.

    Google Scholar 

  14. Ismail, Z. Z. (2012). Kinetic study for phosphate removal from water by recycled date-palm wastes as agricultural by-products. International Journal of Environmental Studies, 69, 135–149.

    Article  Google Scholar 

  15. Briones, R., Serrano, L., Younes, R.B., Mondragon, I., & Labidi, J. (2011). Polyol production by chemical modification of date seeds.Industrial Crops and Products, 34, 1035–1040.

    Google Scholar 

  16. Besbes, S., Blecker, C., Deroanne, C., Drira, N.-E., & Attia, H. (2004). Date seeds: Chemical composition and characteristic profiles of the lipid fraction. Food chemistry, 84, 577–584.

    Article  Google Scholar 

  17. Al Farsi, M. A., & Lee, C. Y. (2008). Nutritional and functional properties of dates: A review. Critical Reviews in Food Science and Nutrition, 48, 877–887.

    Article  Google Scholar 

  18. Al-Omari, S. A. B. (2006). Experimental Investigation on the Combustion and Heat Transfer Characteristics in a Furnace with Unconventional Biomass Fuels (Date Stones and Palm Stalks). Energy Conversion Management, 47, 778–790.

    Google Scholar 

  19. Al-Omari, S. A. B. (2009). Evaluation of the Biomass “Date Stones” as a Fuel in Furnaces: A Comparison with Coal Combustion. International Communication in Heat and Mass Transfer, 36, 956–961.

    Google Scholar 

  20. Sait, H. H., Hussain, A., Salema, A. A., & Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382–389.

    Google Scholar 

  21. Abed, I., Paraschiv, M., Loubar, K., Zagrouba, F., & Tazerout, M. (2012). Thermogravimetric investigation and thermal conversion kinetics of typical North African and middle eastern lingo cellulosic wastes. BioResources, 7, 1200–1220.

    Google Scholar 

  22. Joardder, M. U. H., Uddin, M. S., & Islam, M. N. (2012). The utilization of waste date seed as bio-oil and activated carbon by pyrolysis process. Advanced Mechanical Engineering, 2012, 6 pages.

    Google Scholar 

  23. Demirbas, A. (2004). Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues. Journal of Analytical Applied Pyrolysis, 72, 243–248.

    Article  Google Scholar 

  24. Karaosmanoglu, F., Çift, B. D., & Işigigür-Ergüdenler, A. (2001). Determination of reaction kinetics of straw and stalk of rapeseed using thermogravimetric analysis. Energy Sources, 23, 767–774.

    Google Scholar 

  25. Şensöz, S., & Can, M. (2002). Pyrolysis of pine (Pinus Brutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields. Energy Sources, 24, 347–355.

    Google Scholar 

  26. Mansaray, K. G., & Ghaly, A. E. (1997). Physical and Thermochemical Properties of Rice Husk. Energy Sources, 19(9), 989–1004. https://doi.org/10.1080/00908319708908904.

  27. Kastanaki, E., & Vamvuka, D. (2006). A comparative reactivity and kinetic study on the combustion of coal–biomass char blends. Fuel, 85(9), 1186–1193. https://doi.org/10.1016/j.fuel.2005.11.004.

    Article  Google Scholar 

  28. Akasha, I. A., Campbell, L., & Euston, S. R. (2012). Extraction and characterisation of protein fraction from date palm fruit seeds. World Academy of Science, Engineering and Technology, 70.

    Google Scholar 

  29. El Maya, Y., Jeguirim, M., Dorge, S., Trouvé, G., & Said, R. (2012). Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy, 44, 702–709.

    Article  Google Scholar 

  30. Sánchez-Zapata, E., Fernández-López, J., Peñaranda, M., Fuentes-Zaragoza, E., Sendra, E., Sayas, E., & Pérez-Alvarez, J. A. (2011). Technological properties of date paste obtained from date by-products and its effect on the quality of a cooked meat product. Food Research International, 44, 2401–2407.

    Article  Google Scholar 

  31. Baliga, M. S., Baliga, B. R. V., Kandathil, S. M., Bhat, H. P., & Vayalil, P. K. (2011). A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Research International, 44, 1812–1822.

    Article  Google Scholar 

  32. Bendahou, A., Dufresne, A., Kaddamai, H., & Habibi, Y. (2007). Isolation and structural characterization of hemicelluloses from palm of Pheonix dactylifera L. Carbohydrate Polymers, 68, 601–608.

    Article  Google Scholar 

  33. Saadaoui, N., Rouilly, A., Fares, K., & Rigal, L. (2013). Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Materials and design, 50, 302–308.

    Article  Google Scholar 

  34. Khiari, R., Mhenni, M. F., Belgacem, M. N., & Mauret, E. (2010). Chemical composition and pulping of date palm rachis and Posidonia oceanica—A comparison with other wood and non-wood fibre sources. Bioresource Technology, 101, 775–780.

    Article  Google Scholar 

  35. Mansaray, K. .G., & Ghaly, A. E. (1998). Thermal degradation of rice husks in nitrogen atmosphere. Bioresource Technology, 65(1–2), 13–20. https://doi.org/10.1016/S0960-8524(98)00031-5.

  36. Várhegyi, G., Antal, M. J., Jakab, E., & Szabó, P. (1997). Kinetic modeling of biomass pyrolysis. Journal of Analytical Applied Pyrolysis , 42, 73–87.

    Google Scholar 

  37. Al-Zuhair, S., Ahmed, K., Abdulrazak, A., & El-Naas, M. H. (2013). Synergistic effect of pretreatment and hydrolysis enzymes on the production of fermentable sugars from date palm lignocellulosic waste. Journal of Industrial and Engineering Chemistry, 19, 413–415.

    Article  Google Scholar 

  38. Anuradha, J., Abbasi, T., & Abbasi, S. A. (2015). An eco−friendly method of synthesizing gold nanoparticles using on otherwise worthless weed pistia. Journal of Advanced Research, http://doi.org/10.1016/j.jare.2014.03.006.

  39. Abbasi, T., & Abbasi, S.A. (2012). Is the use of renewable energy sources an answer to the problems of global warming and pollution? Critical Reviews in Environmental Science and Technology (Taylor and Francis), 42, 99–154.

    Google Scholar 

  40. Abbasi, S. A. (2006). Atomic Absorption Spectrometric and Spectrophotometric Trace Analysis of Uranium in Environmental Samples with N-p-MEthoxyphenyl-2-Furylacrylohydroxamic acid and 4-(2-Pyridylazo) Resorcinol. International Journal of Environmental Analytical Chemistry, 36(3), 163–172. https://doi.org/10.1080/03067318908026869.

  41. Abd-Alla, M. H., Morsy, F. M., & El-Enany, A. W. E. (2011). Hydrogen production from rotten dates by sequential three stages fermentation. International Journal of Hydrogen Energy, 36(21), 13518–13527.

    Article  Google Scholar 

  42. Mehaia, M. A., & Cheryan, M. (1991). Fermentation of date extracts to ethanol and vinegar in batch and continuous membrane reactors. Enzyme and Microbial Technology, 13(3), 257–261.

    Article  Google Scholar 

  43. Besbes, S., Drira, L., Blecker, C., Deroanne, C., & Attia, H. (2009). Adding value to hard date (Phoenix dactylifera L.): Compositional, functional and sensory characteristics of date jam. Food Chemistry, 112, 406–411.

    Article  Google Scholar 

  44. Gupta, N., & Kushwaha, H. (2011). Date Palm as a Source of Bioethanol Producing Microorganisms. In S. M. Jain, J. M. Al-Khayri, & D. V. Johnson (Eds.), Springer (pp. 711–727). Date Palm Biotechnology.

    Google Scholar 

  45. Gaily, M. H., Sulieman, A. K., Zeinelabdeen, M. A., Al-Zahrani, S. M., Atiyeh, H. K., & Abasaeed, A. E. (2012). The effects of activation time on the production of fructose and bioethanol from date extract. African Journal of Biotechnology., 11(32), 8212–8217.

    Google Scholar 

  46. Acourene, S., & Ammouche, A. (2012). Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii. Journal of Industrial Microbiology and Biotechnology, 39(5), 759–766.

    Article  Google Scholar 

  47. Abd-Alla, M. H., & El-Enany, A. W. E. (2012). Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass and Bioenergy, 42, 172–178.

    Article  Google Scholar 

  48. Khamaiseh, E. I., Kalil, M. S., Dada, O., El-Shawabkeh, I., & Yusoff, W. M. W. (2012). Date fruit as carbon source in RCM-Modified medium to produce biobutanol by Clostridium acetobutylicum NCIMB 13357. Journal of Applied Sciences, 12(11), 1160–1165.

    Article  Google Scholar 

  49. Ahmadi, F., Rad, A. R., Holtzapple, M. T., & Zamiri, M. J. (2012). Short-term oxidative lime pre-treatment of palm pruning waste for use as animal feedstuff. Journal of the Science of Food and Agriculture, Article in press.

    Google Scholar 

  50. Bamufleh, H. S., Alhamed, Y. A., & Daous, M. A. (2013). Furfural from midribs of date-palm trees by sulfuric acid hydrolysis. Industrial Crops and Products, 42, 421–428.

    Article  Google Scholar 

  51. Baroon, Z., El-Nawawy, A. S., & Al-Othman, A. (2004). Ensilage of Cardboard and Date Palm Leaves. Journal of Environmental Science and Health—Part A Toxic/Hazardous Substances and Environmental Engineering, 39, 515–533.

    Google Scholar 

  52. Chandrasekaran, M., & Bahkali, A. H. (2013). Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology—Review. Saudi Journal of Biological Sciences. Article in press.

    Google Scholar 

  53. Devshony, S., Eteshola, A., & Shani, A. (1992). Characterisation and some potential application of date palm (Phoenix dactylifera L.) seeds and seeds oil. Bioresource Technology, 67, 291–295.

    Google Scholar 

  54. Ghehsareh, A. M., Samadi, N., & Borji, H. (2011). Comparison of date-palm wastes and perlite as growth substrates on some tomato growing indexes. African Journal of Biotechnology, 10(24), 4871–4878.

    Google Scholar 

  55. Ghosh, S. K., Sengupta, S., & Naskar, M. (2010). Physio-mechanical properties of particle boards from agro-wastes. Journal of Scientific and Industrial Research, 69(5), 396–400.

    Google Scholar 

  56. Ramzi, K., Nizar, M., Farouk, M., Naceur, B. M., & Evelyne, M. (2011). Sodium carboxylmethylate cellulose from date palm rachis as a sizing agent for cotton yarn. Fibers and Polymers, 12(5), 587–593.

    Article  Google Scholar 

  57. Tavakkoli, M., Hamidi-Esfahani, Z., & Azizi, M. H. (2009). Optimization of Corynebacterium glutamicum Glutamic acid production by response surface methodology. Food and Bioprocess Technology, 1–8.

    Google Scholar 

Download references

Acknowledgements

SAA thanks Indian National Science Academy [INSA], New Delhi, and PP thanks Council for Scientific and Industrial Research [CSIR], New Delhi, for support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabassum-Abbasi, Nayeem-Shah, M., Abbasi, S.A., Abbasi, T. (2022). Date Palm Waste and Attempts to Use it as an Energy Source: State-of-the-Art. In: Siddiqui, N.A., Khan, F., Tauseef, S.M., Ghanem, W.S., Garaniya, V. (eds) Advances in Behavioral Based Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-8270-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8270-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8269-8

  • Online ISBN: 978-981-16-8270-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics