Skip to main content

Preventive Role and Mechanism of Herbal Medicine in Alzheimer’s Disease with Special Reference to Phenolic Compounds

  • Chapter
  • First Online:
Role of Nutrients in Neurological Disorders

Abstract

Alzheimer’s diseases (AD) is prevalent and is characterized by memory deficits/loss which became prevalent in age old persons and much research is focused to develop new inhibitors for pathogenic marker proteins in the treatment. The scientific evidence strongly supports that the herbal medicine is highly effective on the AD and much research is in advancement on the cholinesterase inhibitors and their usage. Since the dawn of civilization, many plants were used for nervous disorders as memory boosters and rejuvenator even as aphrodisiacs in treatment of epilepsy, weakness, anxiety, etc.. The advent of scientific methodologies the natural medicaments were studied and evaluated scientifically and developed as potential pharmaceuticals and commercialized. The present review emphasizes the phytochemicals, especially the phenolic compounds which include flavonoids, coumarins, lignans, polyphenolics and its glycosides. These compounds exert preventive mechanism in age-related disorders by involving antioxidant activity or signaling cascades. The phenolics of Camellia sinensis, (Tea), Curcuma longa (Turmeric), Vitis vinifera (grape), etc. were taken directly as ingredients in the food, whereas the other plants were given as medicaments. Among these, Epigallocatechin gallate from Tea, curcumin from the turmeric, resveratrol from grape, baicalin from Scutellaria baicalensis, caffeoylquinic acids from Centella asiatica, rosmarinic acid from Melissa officinalis, etc. were well established and studied to prove its molecular mechanisms, which were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal BB, Harikumar KB (2008) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbosa PR, Valvassori SS, Bordignon CL Jr, Kappel VD, Martins MR, Gavioli EC, Quevedo J, Reginatto FH (2008) The aqueous extracts of Passiflora alata and Passiflora edulis reduce anxiety-related behaviors without affecting memory process in rats. J Med Food 11:282–288

    Article  CAS  PubMed  Google Scholar 

  • Bastianetto S, Ramassamy C, Doré S, Christen Y, Poirier J, andQuirion R. (2000a) The ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur J Neurosci 12:1882–1890

    Article  CAS  PubMed  Google Scholar 

  • Bastianetto S, Zheng WH, Quirion R (2000b) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide toxicity in cultured hippocampal neurons. Br J Pharmacol 131:711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6:367–377

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee A (2018) Anticholinesterase potential of phytoextracts and their bioactive compounds: a promising therapeutic agent against Alzheimer’s disorder. MOJ Tumor Res 1:83–87

    Google Scholar 

  • Birks J, Grimley EJ (2009) Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev CD003120

    Google Scholar 

  • Cho J, Lee HK (2004) Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells. Eur J Pharmacol 485:105–110

    Article  CAS  PubMed  Google Scholar 

  • Cole GM, Morihara T, Lim GP, Yang F, Begum A, Frautschy SA (2004) NSAID and antioxidant prevention of Alzheimer’s disease: lessons from in vitro and animal models. Ann N Y Acad Sci 1035:68–84

    Article  CAS  PubMed  Google Scholar 

  • Ganguli M, Chandra V, Kamboh MI, Johnston JM, Dodge HH, Thelma BK, Juyal RC, Pandav R, Belle SH, DeKosky ST (2000) Apolipoprotein E polymorphism and Alzheimer disease: the Indo-US cross-national dementia study. Arch Neurol 57:824–830

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Sakurai K, Katoh M, Chen J, Ogiso T (1996) Inhibition of microsomal lipid peroxidation by baicalein: a possible formation of an iron-baicalein complex. Biochem Mol Biol Int 39:215–225

    CAS  PubMed  Google Scholar 

  • Gao D, Tawa R, Masaki H, Okano Y, Sakurai H (1998) Protective effects of baicalein against cell damage by reactive oxygen species. Chem Pharm Bull 46:1383–1387

    Article  CAS  Google Scholar 

  • Gao Z, Huang K, Yang X, Xu H (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1472:643–650

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Huang K, Xu H (2001) Protective effects flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacol Res 43:173–178

    Article  CAS  PubMed  Google Scholar 

  • Gray J (1998) Caffeine, coffee and health. Nutr Food Sci 6:314–319

    Article  Google Scholar 

  • Gray NE, Morré J, Kelley J, Maier CS, Stevens JF, Quinn JF, Soumyanath A (2014) Caffeoylquinic acids in Centella asiatica protect against amyloid-β toxicity. J Alzheimers Dis 40:359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray NE, Sampath H, Zweig JA, Quinn JF, Soumyanath A (2015) Centellaasiatica attenuates amyloid-β-induced oxidative stress and mitochondrial dysfunction. J Alzheimers Dis 45:933–946

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray NE, Harris CJ, Quinn JF, Soumyanath A (2016) Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J Ethnopharmacol 180:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray NE, Alcazar MA, Lak P, Wright KM, Quinn J, Stevens JF, Maier CS, Soumyanath A (2017) Centella asiatica: phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev 17:161–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray NE, Zweig JA, Caruso M, Zhu JY, Wright KM, Quinn JF, Soumyanath A (2018) Centella asiatica attenuates hippocampal mitochondrial dysfunction and improves memory and executive function in β-amyloid overexpressing mice. Mol Cell Neurosci 93:1–9. https://doi.org/10.1016/j.mcn.2018.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada H, Hiramatsu M, Edamatsu R, Mori A (1993) Free radical scavenging action of baicalein. Arch Biochem Biophys 306:261–266

    Article  CAS  PubMed  Google Scholar 

  • Haque AM, Hashimoto M, Katakura M, Tanabe Y, Hara Y, Shido O (2006) Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr 136:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Heo HJ, Kim DO, Choi SJ, Shin DH, Lee CY (2004) Potent inhibitory effect of flavonoids in Scutellaria baicalensison amyloid β protein-induced neurotoxicity. J Agric Food Chem 52:4128–4132

    Article  CAS  PubMed  Google Scholar 

  • Hsu YY, Tseng YT, Lo YC (2013) Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol Appl Pharmacol 272:787–796

    Article  CAS  PubMed  Google Scholar 

  • Huh SW, Bae SM, Kim YW, Lee JM, Namkoong SE, Lee IP, Kim SH, Kim CK, Ahn WS (2004) Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol Oncol 94:760–768

    Article  CAS  PubMed  Google Scholar 

  • Hur JY, Lee P, Kim H, Kang I, Lee KR, Kim SY (2004) (−)-3,5-Dicaffeoyl-muco-quinic acid isolated from Aster scaber contributes to the differentiation of PC12 cells: through tyrosine kinase cascade signalling. Biochem Biophys Res Commun 313:948–953

    Article  CAS  PubMed  Google Scholar 

  • Jamil SS, Nizami Q, Salam M (2007) Centella asiatica (Linn.) urban—a review. Nat Prod Radiance 6:158–170

    Google Scholar 

  • Kim H, Kim YS, Kim SY, Suk K (2001a) The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci Lett 309:67–71

    Article  CAS  PubMed  Google Scholar 

  • Kim YO, Leem K, Park J, Lee P, Ahn DK, Lee BC, Park HK, Suk K, Kim SY, Kim H (2001b) Cytoprotective effect of Scutellaria baicalensis in CA1 hippocampal neurons of rats after global cerebral ischemia. J Ethnopharmacol 77:183–188

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, Lee SE (2005) Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem 53:8537–8541

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112:1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Kwon OW, Kim SY, Lee KR (2013) Bioactive lignans from the Trunk of Abies holophylla. J Nat Prod 76:2131–2135

    Article  CAS  PubMed  Google Scholar 

  • Lai MY, Chen CC, Hou YC, Hsiu SL, Chao PD (2001) Analysis and comparison of baicalin, baicalein and wogonin contents in traditional decoctions and commercial extracts of Scutellaria radix. J Food Drug Anal 9:145–149

    CAS  Google Scholar 

  • Lebeau A, Esclaire F, Rostène W, Pélaprat D (2001) Baicalein protects cortical neurons from β-amyloid (25-35) induced toxicity. Neuroreport 12:2199–2202

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, Cho GJ, Choi WS, Suk K (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J 17:1943–1944

    Article  CAS  PubMed  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin B (2009) Integrating comprehensive and alternative medicine into stroke: herbal treatment of ischemia (Chapter 12). In: Watson RR (ed) Complementary and alternative therapies and the aging population. Academic Press, pp 229–274

    Chapter  Google Scholar 

  • Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37:304–317

    Article  CAS  PubMed  Google Scholar 

  • McGee H (2004) On food and cooking: the science and lore of the kitchen, 2nd edn. Scribner, New York, pp 425–426

    Google Scholar 

  • Muroyama A, Fujita A, Cheng LV, Kobayashi S, Fukuyama Y, Mitsumoto Y (2012) Magnolol protects against MPTP/MPP+-induced toxicity via inhibition of oxidative stress in in vivo and in vitro models of Parkinson’s disease. Parkinson’s Dis 2012:985157

    Google Scholar 

  • Nakamura N, Hayasaka S, Zhang XY, Nagaki Y, Matsumoto M, Hayasaka Y, Terasawa K (2003) Effects of baicalein, baicalin, and wogonin on interleukin-6 and interleukin-8 expression, and nuclear factor-kb binding activities induced by interleukin-1beta in human retinal pigment epithelial cell line. Exp Eye Res 77:195–202

    Article  CAS  PubMed  Google Scholar 

  • Omri EA, Han J, Yamada P, Kawada K, Abdrabbah MB, Isoda H (2010) Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2. J Ethnopharmacol 131:451–458

    Article  PubMed  Google Scholar 

  • ONeil LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20:252–258

    Article  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  CAS  PubMed  Google Scholar 

  • Park BK, Heo MY, Park H, Kim HP (2001) Inhibition of TPA-induced cyclooxygenase-2 expression and skin inflammation in mice by wogonin, a plant flavone from Scutellariaradix. Eur J Pharmacol 425:153–157

    Article  CAS  PubMed  Google Scholar 

  • Piao HZ, Jin SA, Chun HS, Lee JC, Kim WK (2004) Neuroprotective effect of wogonin: potential roles of inflammatory cytokines. Arch Pharm Res 27:930–936

    Article  CAS  PubMed  Google Scholar 

  • Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim MB, Weinreb O, Mandel S (2006) Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease. J Neurochem 97:527–536

    Article  CAS  PubMed  Google Scholar 

  • Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2(2):131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanka N, Santhipriya N, Nadendla RR (2018) An updated review on anti-Alzheimer’s herbal drugs. J Drug Deliv Ther 8(6):360–372. https://doi.org/10.22270/jddt.v8i6.2049

    Article  CAS  Google Scholar 

  • Shieh DE, Liu LT, Lin CC (2000) Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 20:2861–2865

    CAS  PubMed  Google Scholar 

  • Shim S, Kwon J (2012) Effects of [6]-shogaol on cholinergic signaling in HT22 cells following neuronal damage induced by hydrogen peroxide. Food Chem Toxicol 50:1454–1459

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Bhalla M, de Jager P, Gilca M (2011) An overview on Ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Alternat Med 8:208–213

    Google Scholar 

  • Soh Y, Kim JA, Sohn NW, Lee KR, Kim SY (2003) Protective effects of quinic acid derivatives on tetrahydropapaveroline-induced cell death in C6 glioma cells. Biol Pharm Bull 6:803–807

    Article  Google Scholar 

  • Son D, Lee P, Lee J, Kim H, Kim SY (2004) Neuroprotective effect of wogonin in hippocampal slice culture exposed to oxygen and glucose deprivation. Eur J Pharmacol 493:99–102

    Article  CAS  PubMed  Google Scholar 

  • Soumyanath A, Zhang Y, Henson E, Wadsworth T, Bishop J, Gold BG, Quinn JF (2012) Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: investigation of a possible mechanism of action. Int J Alzheimer’s Dis 2012:381974

    Google Scholar 

  • Suk K, Lee H, Kang SS, Cho GJ, Choi WS (2003) Flavonoid baicalein attenuates activation-induced cell death of brain microglia. J Pharmacol Exp Ther 305:638–645

    Article  CAS  PubMed  Google Scholar 

  • Tsai TH, Liu SC, Tsai PL, Ho LK, Shum AYC, Chen CF (2002) The effects of the cyclosporin A, a P-glycoprotein inhibitor, on the pharmacokinetics of baicalein in the rat: a micro dialysis study. Br J Pharmacol 137:1314–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi I, Yasui K (2000) Wogonin inhibits inducible prostaglandin E2 production in macrophages. Eur J Pharmacol 406:477–481

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, MacDonald RS, Miller DK, Lubah DE, Weisman GA, Sun GY (2005) Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82:138–148

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ho L, Zhao W, Seror I, Humala N, Dickstein DL, Thiyagarajan M, Percival SS, Talcott ST, Pasinetti GM (2006) Moderate consumption of Cabernet Sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer’s diseases. FASEB J 20:2313–2320

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Mandel S, Amit T, Youdim MB (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Liu Z, Liu Y (2009) Administration of midazolam in infancy does not affect learning and memory of adult mice. Clin Exp Pharmacol Physiol 36:1144–1148

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Wang C, Yang L et al (2013) C-dideoxyhexosyl flavones from the stems and leaves of Passiflora edulis Sims. Food Chem 136:94–99

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Yoo DY, Choi JH, Kim W, Yoo KY, Lee CH, Yoon YS, Won MH, Hwang KI (2011) Effects of Melissa officinalis L. (Lemon Balm) extract on neurogenesis associated with serum corticosterone and GABA in the mouse dentate gyrus. Neurochem Res 36:250–257

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Lin G, Chang Q, Zuo Z (2005) Role of intestinal first-pass metabolism of baicalein in its absorption process. Pharm Res 22:10501058

    Article  Google Scholar 

  • Zhang L, Lin G, Zuo Z (2007) Involvement of UDP-glucuronosyltransferases in the extensive liver and intestinal first-pass metabolism of flavonoid baicalein. Pharm Res 24:81–89

    Article  PubMed  Google Scholar 

  • Zhang LJ, Wu CF, Meng XL, Yuan D, Cai XD, Wang QL (2008) Comparison of inhibitory potency of three different curcuminoid pigments on nitric oxide and tumor necrosis factor production of rat primary microglia induced by lipopolysaccharide. Neurosci Lett 447:48–53

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Wang JL, Liu R, Li X, Zhang L (2013) Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 18:9949–9965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. J Biol Chem 279:26846–26857

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lepakshi Md. Bhakshu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Md. Bhakshu, L., Venkata Ratnam, K., Venkata Raju, R.R. (2022). Preventive Role and Mechanism of Herbal Medicine in Alzheimer’s Disease with Special Reference to Phenolic Compounds. In: Rajagopal, S., Ramachandran, S., Sundararaman, G., Gadde Venkata, S. (eds) Role of Nutrients in Neurological Disorders. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-16-8158-5_17

Download citation

Publish with us

Policies and ethics