Skip to main content

Nanoceuticals as Theranostics Against Neurodegenerative Diseases

  • Chapter
  • First Online:
Role of Nutrients in Neurological Disorders

Part of the book series: Nutritional Neurosciences ((NN))

  • 662 Accesses

Abstract

Nanoceuticals, also referred to as nutraceuticals, are pharmacological molecules or natural supplements fabricated employing nanotechnology-related approaches. Recently, application of these nanoceuticals has been established as a novel paradigm shift helping in modulating the properties of potent compounds at the molecular level in terms of enhanced solubility, permeability, systemic availability, and with reduced adverse effects. These nanosized molecules are designed using various fabrication methods, namely nanocapsules, micelles, nanoemulsions, nanocochleates, nanoparticles, and nanocrystals for their target-oriented delivery. Owing to these benefits, nanotechnology finds a huge prospect in improvising safety as well as quality of human lives. Several studies have witnessed the advantages of nanoceuticals in health-promotion or disease-prevention attributes against numerous ailments like cancer, diabetes, cardiovascular, and neurodegenerative diseases. Although nanoceuticals cannot be considered as a replacement to pharmaceuticals, but can act as an alternate indispensable tool in the treatment and prevention of diseases. This chapter provides a systematic review of the application of nanoceuticals as a therapeutic or pharmacological intervention towards the management of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams JD, Wang R, Yang J, Lien EJ (2006) Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions. Chin Med 1(1):1–15

    Article  Google Scholar 

  • Agarwal M, Sahoo AK, Bose B (2017) Receptor-mediated enhanced cellular delivery of nanoparticles using recombinant receptor-binding domain of diphtheria toxin. Mol Pharm 14(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Alam MI, Baboota S, Ahuja A, Ali M, Ali J et al (2013) Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood. Drug Deliv 20(6):247–251

    Article  CAS  PubMed  Google Scholar 

  • Alam MS, Garg A, Pottoo FH, Saifullah MK, Tareq AI et al (2017) Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: investigation of process-variables impact using Box-Behnken based statistical design. Int J Biol Macromol 104:758–767

    Article  CAS  PubMed  Google Scholar 

  • Amorati R, Valgimigli L (2018) Methods to measure the antioxidant activity of phytochemicals and plant extracts. J Agric Food Chem 66(13):3324–3329

    Article  CAS  PubMed  Google Scholar 

  • Barkat MA, Beg S, Pottoo FH, Ahmad FJ (2019) Nanopaclitaxel therapy: an evidence-based review on the battle for next-generation formulation challenges. Nanomedicine 14(10):1323–1341

    Article  PubMed  Google Scholar 

  • Bhowmik S, Santhilna KS, Praveen T (2015) Evaluation of antioxidant and anticholinesterase potential of bark extracts of Alstonia scholaris. J Pharm Pharmacol 2(4):203–205

    Google Scholar 

  • Calabrese V, Stella AG, Butterfield DA, Scapagnini G (2004) Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and HSP70 systems in brain stress tolerance. Antioxid Redox Signal 6(5):895–913

    CAS  PubMed  Google Scholar 

  • Candore G, Caruso C, Jirillo E, Magrone T, Vasto S (2010) Low grade inflammation as a common pathogenetic denominator in age-related diseases: novel drug targets for anti-ageing strategies and successful ageing achievement. Curr Pharm Des 16(6):584–596

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Ettcheto M, Espina M, Auladell C, Calpena AC et al (2018) Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: a new anti-seizure strategy for temporal lobe epilepsy. Nanomedicine 14(4):1073–1085

    Article  CAS  PubMed  Google Scholar 

  • Chan HC, Chang RC, Koon-Ching Ip A, Chiu K, Yuen WH et al (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203(1):269–273

    Article  PubMed  Google Scholar 

  • Cho IH (2012) Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 36(4):342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz LJ, Stammes MA, Que I, van Beek ER, Knol-Blankevoort VT et al (2016) Effect of PLGA NP size on efficiency to target traumatic brain injury. J Control Release 223:31–41

    Article  CAS  PubMed  Google Scholar 

  • Dayalu P, Albin RL (2015) Huntington disease: pathogenesis and treatment. Neurol Clin 33(1):101–114

    Article  PubMed  Google Scholar 

  • Dehghani A, DehghanNayeri N, Ebadi A (2017) Antecedents of coping with the disease in patients with multiple sclerosis. A qualitative content analysis. Int J Community Based Nurs Midwifery 5(1):49–60

    Google Scholar 

  • DeMaagd G, Philip A (2015) Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P T 40(8):504–532

    PubMed  PubMed Central  Google Scholar 

  • Dewhurst F, Dewhurst MJ, Gray WK, Aris E, Orega G et al (2013) The prevalence of neurological disorders in older people in Tanzania. Acta Neurol Scand 127(3):198–207

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Picanco LC, Ozela PF, de Fatima de Brito Brito M, Pinheiro AA, Padilha EC et al (2018) Alzheimer’s disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr Med Chem 25(26):3141–3159

    Article  PubMed  Google Scholar 

  • Duyu T, Khatib NA, Khanal P, Patil BM, Hullatti KK (2020) Network pharmacology-based prediction and experimental validation of Mimosa pudica for Alzheimer’s disease. J Phytopharmacol 9(1):46–53

    Article  CAS  Google Scholar 

  • Edelmann MJ, Maegawa GHB (2000) CNS-targeting therapies for lysosomal storage diseases: current advances and challenges. Front Mol Biosci 7:559804

    Article  Google Scholar 

  • EzzatiNazhadDolatabadi J, Omidi Y (2016) Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trends Anal Chem 77:100–108

    Article  CAS  Google Scholar 

  • Fakhoury M (2015) Role of immunity and inflammation in the pathophysiology of neurodegenerative diseases. Neurodegener Dis 15(2):63–69

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA (2012) Phytochemicals, signal transduction, and neurological disorders. Springer

    Book  Google Scholar 

  • Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):616–630

    Article  CAS  PubMed  Google Scholar 

  • Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova AM (2020) Glial cells-the strategic targets in amyotrophic lateral sclerosis treatment. J Clin Med 9(1):261

    Article  CAS  PubMed Central  Google Scholar 

  • Folch J, Petrov D, Ettcheto M, Abad S, Sánchez-Lopez E et al (2016) Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016:8501693

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham NS, Sharp DJ (2019) Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry 90(11):1221–1233

    Article  PubMed  Google Scholar 

  • Graverini G, Piazzini V, Landucci E, Pantano D, Nardiello P et al (2018) Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids Surf B: Biointerfaces 161:302–313

    Article  CAS  PubMed  Google Scholar 

  • Hasnain MS, Javed MN, Alam MS, Rishishwar P, Rishishwar S et al (2019) Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box-Behnken design. Mater Sci Eng C 99:1105–1114

    Article  CAS  Google Scholar 

  • Hergesheimer R, Lanznaster D, Vourc'h P, Andres C, Bakkouche S et al (2020) Advances in disease-modifying pharmacotherapies for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother 21(9):1103–1110

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581

    Article  Google Scholar 

  • Howard R, McShane R, Lindesay J et al (2012) Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med 366(10):893–903

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Li N, Pu Y, Zhang T, Wang B (2019) Neuroprotective effects of ginseng phytochemicals: recent perspectives. Molecules 24(16):2939

    Article  CAS  PubMed Central  Google Scholar 

  • Hulisz D (2018) Amyotrophic lateral sclerosis: disease state overview. Am J Manag Care 24(15 Suppl):S320–S326

    PubMed  Google Scholar 

  • Huynh DL, Ngau TH, Nguyen NH, Tran GB, Nguyen CT (2020) Potential therapeutic and pharmacological effects of Wogonin: an updated review. Mol Biol Rep 47(12):9779–9789

    Article  CAS  PubMed  Google Scholar 

  • Jagust W (2018) Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci 19(11):687–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal MK (2019) Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev 39(2):733–748

    Article  PubMed  Google Scholar 

  • Jaiswal P, Gidwani B, Vyas A (2016) Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol 44(1):27–40

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H (2018) Medicinal plants: past history and future perspective. J Herbmed Pharmacol 7(1):1–7

    Article  Google Scholar 

  • Jankovic J, Tan EK (2020) Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 91(8):795–808

    Article  PubMed  Google Scholar 

  • Javed MN, Alam MS, Waziri A, Pottoo FH, Yadav AK et al (2019) QbD applications for the development of nanopharmaceutical products. In: Pharmaceutical quality by design. Academic Press, pp 229–253

    Chapter  Google Scholar 

  • Jiang XC, Gao JQ (2017) Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 521(1–2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Jimenez AJ, Dominguez-Pinos MD, Guerra MM, Fernandez-Llebrez P, Perez-Fígares JM (2014) Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2:e28426

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalani A, Kamat PK, Kalani K, Tyagi N (2015) Epigenetic impact of curcumin on stroke prevention. Metab Brain Dis 30(2):427–435

    Article  CAS  PubMed  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R et al (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    Article  CAS  Google Scholar 

  • Khan AA, Mudassir J, Mohtar N, Darwis Y (2013) Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine 8:2733–2744

    PubMed Central  Google Scholar 

  • Kiani AK, Miggiano GAD, Aquilanti B, Velluti V, Matera G et al (2020) Food supplements based on palmitoylethanolamide plus hydroxytyrosol from olive tree or Bacopa monnieri extracts for neurological diseases. Acta Biomed 91(13-S):e2020007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim N, Do J, Ju IG, Jeon SH, Lee JK et al (2020) Picrorhiza kurroa prevents memory deficits by inhibiting NLRP3 inflammasome activation and BACE1 expression in 5xFAD mice. Neurotherapeutics 17(1):189–199

    Article  CAS  PubMed  Google Scholar 

  • Klein P, Dingledine R, Aronica E, Bernard C, Blumcke I et al (2018) Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia 59:37–66

    Article  CAS  PubMed  Google Scholar 

  • Koffie RM, Farrar CT, Saidi LJ, William CM, Hyman BT et al (2011) Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci U S A 108:18837–18842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang Y, An S, Guo Y, Huang S, Shao K et al (2013) T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm 454(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Kumbhar DD, Pokharkar VB (2013) Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: physicochemical investigations. Colloids Surf A Physicochem Eng Asp 416:32–42

    Article  Google Scholar 

  • Leavitt BR, Kordasiewicz HB, Schobel SA (2020) Huntingtin-lowering therapies for Huntington disease: a review of the evidence of potential benefits and risks. JAMA Neurol 77(6):764–772

    Article  PubMed  Google Scholar 

  • Lee SA, Hong SS, Han XH, Hwang JS, Oh GJ et al (2005) Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem Pharm Bull 53(7):832–835

    Article  CAS  Google Scholar 

  • Li J, Hao J (2019) Treatment of neurodegenerative diseases with bioactive components of Tripterygium wilfordii. Am J Chin Med 47(04):769–785

    Article  CAS  PubMed  Google Scholar 

  • Li F, Weng Y, Wang L, He H, Yang J et al (2010) The efficacy and safety of bufadienolides-loaded nanostructured lipid carriers. Int J Pharm 393(1–2):204–212

    Article  Google Scholar 

  • Liang W, Huang X, Chen W (2017) The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis 8(6):850

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima EBC, de Sousa CNS, Vasconcelos GS, Meneses LN, Ximenes NC et al (2016) Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice. J Nat Med 70(3):510–521

    Article  PubMed  Google Scholar 

  • Loscher W (2020) The holy grail of epilepsy prevention: preclinical approaches to antiepileptogenic treatments. Neuropharmacology 167:107605

    Article  PubMed  Google Scholar 

  • Madabhushi R, Pan L, Tsai LH (2014) DNA damage and its links to neurodegeneration. Neuron 83(2):266–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L et al (2016) Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinson’s Dis 2016:9832839

    Google Scholar 

  • Manford M (2017) Recent advances in epilepsy. J Neurol 264(8):1811–1824

    Article  PubMed  PubMed Central  Google Scholar 

  • Marek K, Chowdhury S, Siderowf A et al (2018) The Parkinson’s progression markers initiative (PPMI)—establishing a PD biomarker cohort. Ann Clin Transl Neurol 5:1460–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattis VB, Svendsen CN (2017) Modeling Huntington’s disease with patient-derived neurons. Brain Res 1656:76–87

    Article  CAS  PubMed  Google Scholar 

  • Mestre TA (2019) Recent advances in the therapeutic development for Huntington disease. Parkinsonism Relat Disord 59:125–130

    Article  PubMed  Google Scholar 

  • Minor RK, Allard JS, Younts CM, Ward TM, de Cabo R (2010) Dietary interventions to extend life span and health span based on calorie restriction. J Gerontol A Biomed Sci Med Sci 65(7):695–703

    Article  Google Scholar 

  • Mishra DK, Shandilya R, Mishra PK (2018) Lipid based nanocarriers: a translational perspective. Nanomedicine14(7):2023–2050

    Article  CAS  PubMed  Google Scholar 

  • Mondal A, Chowdhury AR, Bhuyan S, Mukhopadhyay SK, Banerjee P (2019) A simple urea-based multianalyte and multichannel chemosensor for the selective detection of F−, Hg2+ and Cu2+ in solution and cells and the extraction of Hg2+ and Cu2+ from real water sources: a logic gate mimic ensemble. Dalton Trans 48(13):4375–4386

    Article  CAS  PubMed  Google Scholar 

  • Moon M, Kim HG, Choi JG, Oh H, Lee PK et al (2014) 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem Biophys Res Commun 449(1):8–13

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Garcia A, Kun A, Calero O, Medina M, Calero M (2018) An overview of the role of lipofuscin in age-related neurodegeneration. Front Neurosci 12:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Moscano F, Guiducci M, Maltoni L, Striano P, Ledda MG et al (2019) An observational study of fixed-dose Tanacetum parthenium nutraceutical preparation for prophylaxis of pediatric headache. Ital J Pediatr 45(1):1–6

    Article  Google Scholar 

  • Mufson EJ, Ikonomovic MD, Counts SE, Perez SE, Malek-Ahmadi M et al (2016) Molecular and cellular pathophysiology of preclinical Alzheimer’s disease. Behav Brain Res 311:54–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Harwansh RK, Bahadur S, Banerjee S, Kar A (2017) Evidence-based validation of Indian traditional medicine: way forward. In: From Ayurveda to Chinese medicine, pp 137–167

    Chapter  Google Scholar 

  • Muller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155

    Article  CAS  PubMed  Google Scholar 

  • Nabi B, Rehman S, Baboota S, Ali J (2019) Insights on oral drug delivery of lipid nanocarriers: a win-win solution for augmenting bioavailability of antiretroviral drugs. AAPS PharmSciTech 20(2):1–11

    Article  Google Scholar 

  • Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5(3):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negida A, Elfil M, Attia A, Farahat E, Gabr M et al (2017) Caffeine; the forgotten potential for Parkinson’s disease. CNS Neurol Disord Drug Targets 16(6):652–657

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Ryu SN, Bu Y, Kim H, Simon JE et al (2010) Antioxidant components as potential neuroprotective agents in sesame (Sesamum indicum L.). Food Rev Intl 26(2):103–121

    Article  CAS  Google Scholar 

  • Patel T, Zhou J, Piepmeier JM, Saltzman WM (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 64(7):701–705

    Article  CAS  PubMed  Google Scholar 

  • Pottoo FH, Sharma S, Javed MN, Barkat MA, Harshita et al (2020) Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 52(1):185–204

    Article  CAS  PubMed  Google Scholar 

  • Poovi G, Damodharan N (2018) Lipid nanoparticles: a challenging approach for oral delivery of BCS class-II drugs. Future J Pharm Sci 4(2):191–205

    Article  Google Scholar 

  • Priya V, Jananie RK, Vijayalakshmi K (2011) Studies on anti-oxidant activity of Trigonella foenum graecum seed using in vitro models. Int J Pharm Sci Res 2(10):2704

    CAS  Google Scholar 

  • Rahman MA, Harwansh RK, Iqbal Z (2019) Systematic development of sertraline loaded solid lipid nanoparticle (SLN) by emulsification-ultrasonication method and pharmacokinetic study in Sprague-Dawley rats. Pharm Nanotechnol 7(2):162–176

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Teesta VK, Bhattrai A, Khushi K, Bhat S (2012) In vitro propagation of Withania somnifera and estimation of withanolides for neurological disorders. J Pharmacogn 3:85–87

    Google Scholar 

  • Rassu G, Soddu E, Posadino AM, Pintus G, Sarmento B et al (2017) Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B: Biointerfaces 152:296–301

    Article  CAS  PubMed  Google Scholar 

  • Richard A, Frank S (2019) Deutetrabenazine in the treatment of Huntington’s disease. Neurodegener Dis Manag 9(1):31–37

    Article  PubMed  Google Scholar 

  • Rodrigues FB, Wild EJ (2020) Huntington’s disease clinical trials corner: April 2020. J Huntington’s Dis 9(2):185–197

    Article  Google Scholar 

  • Rodriguez-Nogales C, Gonzalez-Fernandez Y, Aldaz A, Couvreur P, Blanco-Prieto MJ (2018) Nanomedicines for pediatric cancers. ACS Nano 12(8):7482–7496

    Article  CAS  PubMed  Google Scholar 

  • Rogers JT, Cahill CM (2020) Iron-responsive-like elements and neurodegenerative ferroptosis. Learn Mem 27:395–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhir R, Khurana M, Singhal NK (2021) Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 146:105023

    Article  CAS  PubMed  Google Scholar 

  • Saucier-Sawyer JK, Deng Y, Seo YE, Cheng CJ, Zhang J et al (2015) Systemic delivery of blood–brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. J Drug Target 23(7–8):736–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saupe A, Wissing SA, Lenk A, Schmidt C, Muller RH (2005) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)–structural investigations on two different carrier systems. Biomed Mater Eng 15(5):393–402

    CAS  PubMed  Google Scholar 

  • Sawda C, Moussa C, Turner RS (2017) Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 1403(1):142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider RB, Iourinets J, Richard IH (2017) Parkinson’s disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag 7(6):365–376

    Article  PubMed  Google Scholar 

  • Sharifi-Rad M, Lankatillake C, Dias DA, Docea AO, Mahomoodally MF et al (2020) Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. J Clin Med 9(4):1061

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma R, Kabra A, Rao MM, Prajapati PK (2018) Herbal and holistic solutions for neurodegenerative and depressive disorders: leads from Ayurveda. Curr Pharm Des 2018:2597–2608

    Article  Google Scholar 

  • Shrestha H, Bala R, Arora S (2014) Lipid-based drug delivery systems. J Pharm (Cairo) 2014:801820

    Google Scholar 

  • Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G (2019) Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 16(3):666–674

    Article  PubMed  PubMed Central  Google Scholar 

  • Son TG, Camandola S, Mattson MP (2008) Hormetic dietary phytochemicals. NeuroMolecular Med 10(4):236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JP (2007) The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2(3):257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade C, French J, Devinsky O (2020) Epilepsy: key experimental therapeutics in early clinical development. Expert Opin Invest Drugs 29(4):373–383

    Article  CAS  Google Scholar 

  • Stoker TB, Torsney KM, Barker RA (2018) Emerging treatment approaches for Parkinson’s disease. Front Neurosci 12:693

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian N, Jothimanivannan C, Senthilkumar R, Kameshwaran S (2014) Sedative and hypnotic activity of ethanolic extract of Justicia gendarussa Burm. Int J Phytopharmacol 5:354–357

    Google Scholar 

  • Sun C, Ding Y, Zhou L, Shi D, Sun L et al (2017) Noninvasive nanoparticle strategies for brain tumor targeting. Nanomedicine 13(8):2605–2621

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Toldi J, Vecsei L (2020) Exploring the etiological links behind neurodegenerative diseases: inflammatory cytokines and bioactive kynurenines. Int J Mol Sci 21:2431

    Article  CAS  PubMed Central  Google Scholar 

  • Trabolsi C, Takash Chamoun W, Hijazi A, Nicoletti C, Maresca M et al (2021) Study of neuroprotection by a combination of the biological antioxidant (eucalyptus extract) and the antihypertensive drug candesartan against chronic cerebral ischemia in rats. Molecules 26(4):839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P et al (2020a) Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 886:173412

    Article  CAS  PubMed  Google Scholar 

  • Uddin MS, Hossain MF, Mamun AA, Shah MA, Hasana S et al (2020b) Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Sci Total Environ 725:138313

    Article  CAS  PubMed  Google Scholar 

  • Uprit S, Sahu RK, Roy A, Pare A (2013) Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm J 21(4):379–385

    Article  PubMed  PubMed Central  Google Scholar 

  • van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ et al (2017) Amyotrophic lateral sclerosis. Lancet 390(10107):2084–2098

    Article  PubMed  Google Scholar 

  • Velu G, Palanichamy V, Rajan AP (2018) Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In: Bioorganic phase in natural food: an overview. Springer, pp 135–156

    Chapter  Google Scholar 

  • Wadajkar AS, Dancy JG, Roberts NB, Connolly NP, Strickland DK et al (2017) Decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. J Control Release 267:144–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 7:F1000 Faculty Rev-1161

    Google Scholar 

  • Yang P, Sheng D, Guo Q, Wang P, Xu S et al (2020) Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease. Biomaterials 238:119844

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Department of Biotechnology, School of Applied Sciences, REVA University for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, P., Anand, S. (2022). Nanoceuticals as Theranostics Against Neurodegenerative Diseases. In: Rajagopal, S., Ramachandran, S., Sundararaman, G., Gadde Venkata, S. (eds) Role of Nutrients in Neurological Disorders. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-16-8158-5_14

Download citation

Publish with us

Policies and ethics