Skip to main content

Optimal Feature Selection for Computer-Aided Characterization of Tissues: Case Study of Mammograms

  • Chapter
  • First Online:
Intelligent Healthcare

Abstract

Feature extraction and selection are very important stages in pattern recognition and computer vision solutions with far-reaching effects on their performance. In computer-aided diagnosis (CADx) systems, efficiency is affected by its subjectivity to the accuracy of the region of interest (ROI) extraction technique, which is largely dependent on the features extracted. Optimization algorithms are often used to improve the selection of discriminative features which thereby leads to improve accuracy of the CADx systems. This work considers the effects of optimizing selected features in the performance of breast tissue characterization in mammograms. It uses Whale Optimization Algorithm (WOA) to optimize Otsu fitness function of Gray Level Co-occurrence Matrix (GLCM) in extracting the region of interest (ROI). The extracted features were classified into BIRADS scales 1, 2 and 5 using Multiclass Support Vector Machine (MSVM). The performance of the developed algorithm was evaluated using specificity, sensitivity as well as accuracy and compared with other techniques namely Texture Signature (TS), Pixel-Based Morphological (PBM), Natural Language Processing (NLP), and Interactive Data Language (IDL). The result of the developed WOA-Otsu-GLCM-MSVM CADx algorithm for specificity, sensitivity, and accuracy are 96%, 92% and 94%, respectively. The developed algorithm gave an accuracy of 94.4% as against 81.0%, 85.7%, 93.0% and 82.5% for TS, PBM, NLP and IDL methods, respectively. The characterization of the breast tumour using the developed CADx algorithm performed better compared with the conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. El Aziz, M. A., Ewees, A. A., Hassanien, A. E., Mudhsh, M., & Xiong, S. (2018). Multi-objective whale optimization algorithm for multilevel thresholding segmentation. In Advances in soft computing and machine learning in image processing (Studies in computational intelligence) (Vol. 730, pp. 23–39). Springer.

    Chapter  Google Scholar 

  2. Hassanpour, H., Samadiani, N., & Salehi, S. M. (2015). Using morphological transforms to enhance the contrast of medical images. The Egyptian Journal of Radiology and Nuclear Medicine, 46(2), 481–489.

    Article  Google Scholar 

  3. Wang, C., Brentnall, A. R., Cuzick, J., Harkness, E. F., Evans, D. G., & Astley, S. (2017). A novel and fully automated mammographic texture analysis for risk prediction: Results from two case-control studies. Breast Cancer Research, 19, 114.

    Article  Google Scholar 

  4. Priyanka, D., & Chinmay, C. (2021). Application of AI on post pandemic situation and lesson learn for future prospects. Journal of Experimental & Theoretical Artificial Intelligence, 1, 1–24.

    Google Scholar 

  5. Chinmay, C. (2019). Performance analysis of compression techniques for chronic wound image transmission under smartphone-enabled tele-wound network. International Journal of E-Health and Medical Communications (IJEHMC), 10(2), 1–15.

    Google Scholar 

  6. Saidin, N., Ngah, K. U., Shuaib, L. I., & Sakim, H. A. M. Segmentation of breast regions in mammogram based on density: A review. Imaging & Computational Intelligence Group (ICI).

    Google Scholar 

  7. Chakravarthi, R., Nandhitha, N. M., Roslin, S. E., & Selvarasu, N. (2016). Tumour extraction from breast mammographs through hough transform and DNN hybrid segmentation technique. Biomedical Research, 27(4), 1188–1193.

    Google Scholar 

  8. Krishnan, M., Chinmay, C., Banerjee, S., Chakraborty, C., & Ray, A. K. (2009). Statistical analysis of mammographic features and its classification using support vector machine. Expert Systems with Applications, 37, 470–478.

    Article  Google Scholar 

  9. Kaur, P., Singh, G., & Kaur, P. (2019). Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Informatics in Medicine Unlocked, 16, 100151.

    Article  Google Scholar 

  10. Ganesan, K., Acharya, U. R., Chua, C. K., Min, L. C., Abraham, K. T., & Kwan-Hoong, N. (2013). Computer-aided breast cancer detection using mammograms: A review. IEEE Reviews in Biomedical Engineering, 6, 77–98.

    Article  Google Scholar 

  11. Pavol, Z., Peter, K., Karol, K., Zuzana, D., Hubert, P., Tibor, B., Erik, K., Marek, S., Alena, L., Dominika, V., Tatiana, K., Igor, S., Veronica, H., Jan, B., Zuzana, L., Dietrich, B., Mariusz, A., Walther, K., Jan, D., & Olga, G. (2019). Why the gold standard approach by mammography demands extension by multiomics? Application of liquid Biopsis miRNA profiles to breast cancer disease management. International Journal of MolecularSciences, 20(12), 2878.

    Google Scholar 

  12. Siegel, R. L., Miller, K. D., Fedewa, S. A., Ahnen, D. J., Meester, R. G. S., Barz, A., & Jemal, A. (2017). Colorectal cancer statistics. CA: a Cancer Journal for Clinicians, 67(3), 177–193.

    Google Scholar 

  13. Ford, D., Easton, D. F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D. T., Weber, B., Lenoir, G., Chang-Claude, J., Sobol, H., Teare, M. D., Struewing, J., Arason, A., Scherneck, S., Peto, J., Rebbeck, T. R., Tonin, P., Neuhausen, S., … Eyfjord, J. (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. American Journal of Human Genetics, 62, 676–689.

    Article  Google Scholar 

  14. Kallenberg, M., Petersen, K., Nielsen, M., Ng, A. Y., Diao, P., Igel, C., Vachon, C. M., Holland, K., Winkel, R. R., Karssemeijer, N., & Lillholm, M. (2016). Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Transactions on Medical Imaging, 35(5), 1322–1331.

    Article  Google Scholar 

  15. Sayed, G. I., Darwish, A., Hassanien, A. E., & Pan, J.-S. (2017). Breast cancer diagnosis approach based on meta-heuristic optimization algorithm inspired by the bubble-net hunting strategy of whales. In Genetic and evolutionary computing (Advances in intelligent systems and computing). Springer.

    Google Scholar 

  16. Nasiri, J., & Khiyaban, F. M. (2018). A whale optimization algorithm (WOA) approach for clustering. Cogent Mathematics & Statistic, 5, 1483565.

    Article  MathSciNet  MATH  Google Scholar 

  17. Yogapriya, J., Saravanabhavan, C., & Ila, V. (2018). Medical image retrieval system using local binary patterns,whale optimization & relevance vector machine algorithms. Tagajuornal, 14, 3164–3191.

    Google Scholar 

  18. Adepoju, T. M., Ojo, J. A., Omidiora, E. O., & Olabiyisi, O. S. (2015). Pixel-based morphological technique for breast tumour detection. International Journal of Scientific & Engineering Research, 6(6), 1416–1420.

    Google Scholar 

  19. ACS. (2017). Breast cancer early detection and diagnosis.

    Google Scholar 

  20. Jalalian, A., Mashohor, S., Mahmud, R., Karasfi, B., Saripan, M. I. B., & Ramli, A. R. B. (2017). Review article: Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI Journal, 16, 113–137.

    Google Scholar 

  21. Saslow, D., Boetes, C., & Burke, W. (2007). American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA: A Cancer Journal for Clinicians, 57(2), 75–89.

    Google Scholar 

  22. Raj, J. R., Rahman, S. M. K., & Anand, S. (2016). Preliminary evaluation of differentiation of benign and malignant breast tumors using non-invasive diagnostic modalities. Biomedical Research, 27(3), 596–603.

    Google Scholar 

  23. Adeyemo, T. T., Adepujo, T. M., Sobowale, A. A., Oyediran, M. O., Omidiora, E. O., & Olabiyisi, S. O. (2017). Feature extraction techniques for mass detection in digital mammogram (review). Journal of Scientific Research & Reports, 17(1), 1–11.

    Article  Google Scholar 

  24. Shallu, R. M. (2018). Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express, 4, 247–254.

    Article  Google Scholar 

  25. Rakhlin, A., Shvets, A., Iglovikov, V., & Kalinin, A. A. (2018). Deep convolutional neural networks for breast cancer histology image analysis. In Lecture notes in computer science (Vol. 10882, pp. 737–744). Springer.

    Google Scholar 

  26. Arau’jo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., et al. (2017). Classification of breast cancer histology images using convolutional neural networks. PLoS One, 12(6), e0177544.

    Article  Google Scholar 

  27. Tahir, M., Muhammad, A. M. O., Min, B. L., & Kang, R. P. (2020). Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and Deep CNNs. Journal of Clinical Medicine, 9, 749.

    Article  Google Scholar 

  28. Alkassar, S., Jebur, B. A., Abdullah, M. A. M., Al-Khalidy, J. H., & Chambers, J. A. Going deeper: Magnification invariant approach for breast cancer classification using histopathological images. IET Computer Vision, 15, 151–164.

    Google Scholar 

  29. Adepoju, T. M., Adeyemo, T. T., Fagbola, T. M., Omidiora, E. O., & Olabiyisi, S. O. (2016). Histogram normalization technique for preprocessing of digital mammographic images. LAUTECH Journal of Engineering and Technology, 10(1), 82–87.

    Google Scholar 

  30. Corinne, B., Salma, A., Kim, V. N., Daniel, V., Clarisse, D., & Robert, S. (2007). BIRADSTM classification in mammography. European Journey of Radiology, 61, 192–194.

    Article  Google Scholar 

  31. Rampun, P., Morrow, J., Scotney, B. W., & Wang, H. (2020). Breast density classification in mammograms: An investigation of encoding techniques in binary-based local patterns. Computers in Biology and Medicine, 122, 1–18.

    Article  Google Scholar 

  32. Aghdam, H., Puig, D., & Solanas, A. (2013). A probabilistic approach for breast boundary extraction in mammograms. Computational and Mathematical Methods in Medicine, 10, 17–26.

    MathSciNet  MATH  Google Scholar 

  33. Suguna, S. K., & Ranganathan, R. (2017). A new Evolutionanary – Based optimization algorithm for mammogram image processing. International Journal of Pure and Applied Mathematics, 117(17), 241–247.

    Google Scholar 

  34. Cruz, C. F. (2011). Automatic analysis of mammography images: Enhancement and segmentation techniques. Port University.

    Google Scholar 

  35. Karakoyun, M., Baykan, N. A., & Hacibeyoglu, M. (2017). Multi-level thresholding for image segmentation with swarm optimization algorithms. International Research Journal of Electronics & Computer Engineering, 3(3), 654–658.

    Article  Google Scholar 

  36. Kumar, T. G., Murugan, D., & Manish, T. I. (2018). An analysis on road extraction from satellite image using Otsu method and genetic algorithm techniques. WSEAS Transactions on Computers, 17, 42–51.

    Google Scholar 

  37. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  38. Zidan, M., Hassanien, A. E., Hefny, H. A., & Houseni, M. (2017). Liver segmentation in MRI images based on whale optimization algorithm. Multimedia Tools and Applications, 76, 24931–24954.

    Article  Google Scholar 

  39. Ozturk, Ş., Akdemir, B., Ozkaya, U., & Seyfi, L. (2017). Soft tissue sacromas segmentation using optimized otsu thresholding algorithms. International Journal of Engineering Technology, Management and Applied Sciences, 5, 9.

    Google Scholar 

  40. Mafarja, M. M., & Mirjalili, S. (2017). Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing, 260, 302–312.

    Article  Google Scholar 

  41. Kowsalya, S., & Priyaa, D. S. (2015). A survey on diagnosis methods of breast cancer using mammography. International Journal of Engineering Technology Science and Research, 2, 100–107.

    Google Scholar 

  42. Guyon, I., & Elisseeff, A. (2003). Special issue on variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

    MATH  Google Scholar 

  43. Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications, 3(5), 1–5.

    Google Scholar 

  44. Punithavathi, V., & Devakumari, D. (2020) Detection of breast lesion using improved GLCM feature based extraction in mammogram images.

    Google Scholar 

  45. Jagadesh, B. N., & Kumari, L. K. (2021). A GLCM based feature extraction in mammogram images using machine learning algorithms. International Journal of Current Research and Review, 13(5), 145–149.

    Article  Google Scholar 

  46. Mahdi, F. (2015). Application of GLCM technique on mammograms for early detection of breast cancer. Journal of Babylon University/Pure and Applied Sciences, 23(2), 885–890.

    Google Scholar 

  47. Chinmay, C. (2019). Computational approach for chronic wound tissue characterization. Elsevier: Informatics in Medicine Unlocked, 17, 1–10.

    Google Scholar 

  48. Mryka, H. B. (2017). GLCM texture: A tutorial. University of Calgar.

    Google Scholar 

  49. Ojo, J. E., Adepoju, T. M., Omidiora, E. O., Olabiyisi, O. S., & Bello, O. T. (2014). Pre-processing method for extraction of pectoral muscle and removal of artefacts in mammogram. IOSR Journal of Computer Engineering (IOSR-JCE), 16(3), 06–09.

    Article  Google Scholar 

  50. Adepoju, T. M., Ojo, J. A., Omidiora, E. O., Olabiyisi, O. S., & Bello, O. T. (2015). Detection of tumour based on breast tissue categorization. British Journal of Applied Science & Technology, 11(5), 1–12.

    Article  Google Scholar 

  51. Mohamed, S. E., Wahbi, T. M., & Sayed, M. H. (2018). Automated detection and classification of breast cancer using mammography images. International Journal of Science, Engineering and Technology Research (IJSETR), 7, 4.

    Google Scholar 

  52. S. M. Castro, E. Tseytlin, O. Medvedeva, . K. Mitchell, S. Visweswaran, T. Bekhuis and R. S. Jacobson, "Automated annotation and classification of BI-RADS assessment from radiology reports, Journal of Biomedical Informatics" 67, 177–187, 2017.

    Article  Google Scholar 

  53. He, W., Denton, E. R., & Zwiggelaar, R. (2010). Mammographic image segmentation and risk classification using a novel texture signature based methodology. IWDM, 6136, 526–533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Olalekan Idowu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojo, J.A., Bello, T.O., Idowu, P.O., Solomon, I.D. (2022). Optimal Feature Selection for Computer-Aided Characterization of Tissues: Case Study of Mammograms. In: Chakraborty, C., Khosravi, M.R. (eds) Intelligent Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-16-8150-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8150-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8149-3

  • Online ISBN: 978-981-16-8150-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics