Skip to main content

Blockchain Technology in Healthcare: Use Cases Study

  • Chapter
  • First Online:
Intelligent Healthcare

Abstract

Blockchain technology is now regarded as one of the most interesting and possibly innovative technologies. It enables information to be stored and exchanged securely and transparently without the need for a centralized authority to regulate it. A few of the primary benefits of this technology is the atomicity of the stored data. Given its features, this technology has the potential to give answers to challenges encountered in a very sensitive sector, notably healthcare. The medical field is dealing with several issues that some are attempting to address today. The most important are the administration of medical records and the claims process, the acceleration of clinical and biomedical research, and the advancement of the biomedical and health data registry. The major challenge is the processing and analysis of patient records due to the large amount of data collected. The security of this data is another challenge to consider. Due to the high connectivity, these systems are prone to malicious attacks. In addition, it is difficult to ensure confidentiality due to the exchange of sensitive data. This chapter discusses the use of blockchain technology in healthcare sector. The purpose of this survey was to provide an overview of the features and concepts related to security requirements of blockchain in a healthcare system. It shows that this technology has a major role in terms of security of patient’s medical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farooq, M., Waseem, M., Mazhar, S., et al. (2015). A review on internet of things (IoT). International Journal of Computers and Applications, 113(1), 36–54.

    Google Scholar 

  2. Zouinkhi, A., Ayadi, H., Val, T., Boussaid, B., & Abdelkrim, M. N. (2020). Auto-management of energy in IoT networks. International Journal of Communication System, 33(1), e4168.

    Article  Google Scholar 

  3. Malcheand, T., & Maheshwary, P. (2017). Internet of things (IoT) for building smart home system. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India (pp. 65–70). IEEE.

    Google Scholar 

  4. Minbo, L., Zhu, Z., & Guangyu, C. (2013). Informat ion service system of agriculture IoT. Automatika, 54(4), 415–426.

    Article  Google Scholar 

  5. George, G., & Thampi, S. M. (2019). Securing smart healthcare systems from vulnerability exploitation. In G. Wang, A. El Saddik, X. Lai, G. MartInez Perez, & K. K. Choo (Eds.), Smart city and informatization. iSCI (Communications in computer and information science) (Vol. 1122). Springer.

    Google Scholar 

  6. Almalki, F. A., Othman, S. B., Almalki, F. A., & Sakli, H. (2021). EERP-DPM: Energy efficient routing protocol using dual prediction model for healthcare using IoT. Journal of Healthcare Engineering, 15, 9988038.

    Google Scholar 

  7. Almalki, F. A., & Othman, S. B. (2021). EPPDA: An efficient and privacy-preserving data aggregation scheme with authentication and authorization for IoT-based healthcare applications. Wireless Communications and Mobile Computing, 2021, 5594159.

    Article  Google Scholar 

  8. Trab, S., Bajic, E., Zouinkhi, A., Abdelkrim, M. N., & Chekir, H. (2018). RFID IoT-enabled warehouse for safety management using product class-based storage and potential fields methods. International Journal of Embedded Systems, 10(1), 71–88.

    Article  Google Scholar 

  9. Mohd Aman, A. H., Hassan, W. H., Sameen, S., et al. (2021). IoMT amid COVID-19 pandemic: Application, architecture, technology, and security. Journal of Network and Computer Applications, 174, 102886.

    Article  Google Scholar 

  10. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from https://bitcoin.org/bitcoin.pdf.

  11. Tasca, P., & Tessone, C. J. A taxonomy of blockchain technologies: Principles of identification and classification (p. 4). Ledger. https://doi.org/10.5195/ledger.2019.140

  12. Manpreet, K., Mohammad, Z. K., Shikha, G., Abdulfattah, N., Chinmay, C., & Subhendu, K. P. (2021). MBCP: Performance analysis of large scale mainstream Blockchain consensus protocols. IEEE Access, 9, 1–14. https://doi.org/10.1109/ACCESS.2021.3085187

    Article  Google Scholar 

  13. Hong-Ning, D., Zibin, Z., & Zhang, Y. (2019). Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal, 6(5), 8076–8094.

    Article  Google Scholar 

  14. Szabo, N. (1997). Smart contracts: Formalizing and securing relationships on public networks. First Monday, 2, 9–1.

    Article  Google Scholar 

  15. Wang, S., Yuan, Y., Wang, X., Li, J., & Qin, R. (2018). An overview of smart contract: Architecture, applications, and future trends (pp. 108–113). IEEE.

    Google Scholar 

  16. Riabi, I., Ayed, H. K. B., & Saidane, L. A. (2019). A survey on Blockchain based access control for internet of things. In 15th International Wireless Communications & Mobile Computing Conference (IWCMC) (pp. 502–507). Tangier.

    Google Scholar 

  17. Bhushan, B., Sahoo, C., Sinha, P., & Khamparia, A. (2020). Unification of Blockchain and Internet of Things (BIoT): Requirements, working model, challenges and future directions. Wireless Networks. https://doi.org/10.1007/s11276-020-02445-6

    Book  Google Scholar 

  18. Bhushan, B., Sinha, P., Sagayam, K. M., & J, A. (2021). Untangling blockchain technology: A survey on state of the art, security threats, privacy services, applications and future research directions. Computers & Electrical Engineering, 90, 106897. https://doi.org/10.1016/j.compeleceng.2020.106897

    Article  Google Scholar 

  19. Saxena, S., Bhushan, B., & Ahad, M. A. (2021). Blockchain based solutions to secure IoT: Background, integration trends and a way forward. Journal of Network and Computer Applications, 181(5), 103050. https://doi.org/10.1016/j.jnca.2021.10305

    Article  Google Scholar 

  20. Haque, A. K., Bhushan, B., & Dhiman, G. (2021). Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends. Expert Systems. https://doi.org/10.1111/exsy.12753

    Book  Google Scholar 

  21. Ajay, K., Kumar, A., Bharat, B., & Chinmay, C. (2021., [SCI, IF 2.79]). Secure access control for manufacturing sector with application of Ethereum blockchain. Peer-to-Peer Networking and Applications, 14, 3058–3074. https://doi.org/10.1007/s12083-021-01108-3

    Article  Google Scholar 

  22. Hong-Ning, D., Zibin, Z., & Zhang, Y. (2019). Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal, 6(5), 8076–8094.

    Article  Google Scholar 

  23. Ramaguru, R., Sindhu, M., & Sethumadhavan, M. (2019). Blockchain for the internet of vehicles. In M. Singh, P. Gupta, V. Tyagi, J. Flusser, T. Ă–ren, & R. Kashyap (Eds.), Advances in computing and data sciences. ICACDS (Communications in computer and information science) (Vol. 1045). Springer.

    Google Scholar 

  24. Mhamdi, H., Zouinkhi, A., & Sakli, H. (2020). Multi-agents system of vehicle services based on Blockchain. In 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 291–296). Monastir.

    Google Scholar 

  25. Joseph, B. A., Chinmay, C., & Sakinat, O. F. (2021). A secured transaction based on Blockchain architecture in Mobile banking platform. International Journal of Internet Technology and Secured Transactions, 2021, 1–12. https://doi.org/10.1504/IJITST.2021.10039177

    Article  Google Scholar 

  26. IBM Institute for Business Value. In Healthcare rallies for blockchains. IBM. https://www.ibm.com/downloads/cas/BBRQK3WY

  27. Bakhtawar, A., Abdul, R. J., Chinmay, C., Jamel, N., Saira, R., & Muhammad, R. (2021). Blockchain and ANFIS empowered IoMT application for privacy preserved contact tracing in COVID-19 pandemic. Personal and Ubiquitous Computing, 2021, 1–17. https://doi.org/10.1007/s00779-021-01596-3

    Article  Google Scholar 

  28. Jabbar, R., Fetais, N., Krichen, M., & Barkaoui, K. (2020). Blockchain technology for healthcare: Enhancing shared electronic health record interoperability and integrity. In 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT) (pp. 310–317). IEEE.

    Chapter  Google Scholar 

  29. Bingqing, S., Guo, J., & Yang, Y. (2019). MedChain: Efficient healthcare data sharing via Blockchain. Applied Sciences, 9(6), 1207.

    Article  Google Scholar 

  30. Antwi, M. S., Adnane, A., Ahmad, F., Hussain, R., Rehman, M. H. u., & Kerrache, C. A. (2021). The case of HyperLedger fabric as a blockchain solution for healthcare applications. Blockchain: Research and Applications, 2(1), 100012. https://doi.org/10.1016/j.bcra.2021.100012

    Article  Google Scholar 

  31. Yang, Y., et al. (2018). Medshare: A novel hybrid cloud for medical resource sharing among autonomous healthcare providers. IEEE Access, 6, 46949–46961.

    Article  Google Scholar 

  32. Fan, K., et al. (2018). Medblock: Efficient and secure medical data sharing via blockchain. Journal of Medical Systems, 42(8), 136.

    Article  Google Scholar 

  33. Syeda, K., Faiza, N., Sahrish, M., et al. (2020). In L. Barolli et al. (Eds.), Trusted remote patient monitoring using blockchain-based smart contracts (BWCCA 2019, LNNS) (Vol. 97, pp. 765–776). Springer Nature.

    Google Scholar 

  34. Ullah Khan, A., Shahid, A., Tariq, F., et al. (2020). In L. Barolli et al. (Eds.), Enhanced decentralized management of patient-driven interoperability based on blockchain (BWCCA 2019, LNNS) (Vol. 97, pp. 815–827). Springer Nature.

    Google Scholar 

  35. Hussein, A. F., Kumar, N. A., Ramirez-Gonzalez, G., Abdulhay, E., Tavares, J. M. R. S., & de Albuquerque, V. H. C. (2018). A medical records managing and securing blockchain based system supported by a genetic algorithm and discrete wavelet transform. Cognitive Systems Research, 52, 1–11.

    Article  Google Scholar 

  36. Zhao, H., Bai, P., Peng, Y., & Xu, R. (2018). Efficient key management scheme for health blockchain. CAAI Transactions on Intelligence Technology, 3, 114–118.

    Article  Google Scholar 

  37. Zhao, H., Zhang, Y., Peng, Y., & Xu, R. (2017, March 22–24). Lightweight backup and efficient recovery scheme for health blockchain keys. In Proceedings of the 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS), Bangkok, Thailand (pp. 229–234). IEEE.

    Chapter  Google Scholar 

  38. Zhang, X., & Poslad, S. (2018, May 20–24). Blockchain support for flexible queries with granular access control to Electronic Medical Records (EMR). In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA.

    Google Scholar 

  39. Guo, R., Shi, H., Zhao, Q., & Zheng, D. (2018). Secure attribute-based signature scheme with multiple authorities for Blockchain in electronic health records systems. IEEE Access, 6, 11676–11686. https://doi.org/10.1109/ACCESS.2018.2801266

    Article  Google Scholar 

  40. Omar, I. A., Jayaraman, R., Debe, M. S., Salah, K., Yaqoob, I., & Omar, M. (2021). Automating procurement contracts in the healthcare supply chain using Blockchain smart contracts. IEEE Access, 9, 37397–37409. https://doi.org/10.1109/ACCESS.2021.3062471

    Article  Google Scholar 

  41. Yongjoh, S., So-In, C., Kompunt, P., Muneesawang, P., & Morien, R. I. Development of an internet-of-healthcare system using blockchain. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3103443

  42. du LEEM, R. (2017). Contrefaçon de médicaments, une atteinte à la santépublique. Leem, juin. http://www.leem.org/sites/default/files/DP-contrefacon-06-07-2017.pdf

    Google Scholar 

  43. Clauson, A., Breeden, A., Davidson, C., & Mackey, K. Leveraging blockchain technology to enhance supply chain management in healthcare: An exploration of challenges and opportunities in the health supply chain. Blockchain in Healthcare Todayâ„¢. ISSN 2573-8240. https://doi.org/10.30953/bhty.v1.20

  44. Khatoon, A. (2020). A Blockchain-based smart contract system for healthcare management. Electronics, 9(1), 94. https://doi.org/10.3390/electronics9010094

    Article  Google Scholar 

  45. Casado-Vara, R., GonzĂ¡lez Briones, A., Prieto, J., & Corchado RodrĂ­guez, J. (2019, June). Smart contract for monitoring and control of logistics activities: Pharmaceutical utilities case study. In Advances in intelligent systems and computing. IEEE.

    Google Scholar 

  46. Raj, R., Rai, N., & Agarwal, S. (2019). Anticounterfeiting in pharmaceutical supply chain by establishing proof of ownership. In TENCON 2019–2019 IEEE Region 10 Conference(TENCON) (pp. 1572–1577). IEEE.

    Chapter  Google Scholar 

  47. Jamil, F., Hang, L., Kim, K., & Kim, D. (2019). A novel medical blockchain model for drug supply chain integrity management in a smart hospital. Electronics, 8(5), 505.

    Article  Google Scholar 

  48. Radanović, I., & Likić, R. (2018). Opportunities for use of blockchain technology in medicine. Applied Health Economics and Health Policy, 16, 583–590. https://doi.org/10.1007/s40258-018-0412-8

    Article  Google Scholar 

  49. Roman-Belmonte, J. M., De la Corte-Rodriguez, H., Rodriguez-Merchan, E. C. C., la Corte-Rodriguez, H., & Carlos Rodriguez-Merchan, E. (2018). How Blockchain technology can change medicine. Postgraduate Medicine, 130, 420–427.

    Article  Google Scholar 

  50. Mytis-Gkometh, P., Efraimidis, P. S., Kaldoudi, E., & Drosatos, G. (2017). Notarization of knowledge retrieval from biomedical repositories using Blockchain technology. In IFMBE Proceedings (Vol. 66, pp. 69–73). Springer Nature.

    Google Scholar 

  51. Zhuang, Y., Sheets, L. R., Shae, Z., Chen, Y. W., Tsai, J. J. P., & Shyu, C. R. (2019). Applying Blockchain technology to enhance clinical trial recruitment. AMIA Annual Symposium Proceedings AMIA Symposium., 2019, 1276–1285.

    Google Scholar 

  52. Zhuang, Y., Sheets, L., Gao, X., Shen, Y., Shae, Z. Y., Tsai, J. J. P., & Shyu, C. R. (2021 January 25). Development of A blockchain framework for virtual clinical trials. AMIA Annual Symposium Proceedings, 2020, 1412–1420.

    Google Scholar 

  53. Cha, S.-C., Chen, J.-F., Chunhua, S., & Yeh, K.-H. (2018). A blockchain connected gateway for ble-based devices in the internet of things. IEEE Access, 6, 24639–24649.

    Article  Google Scholar 

  54. Uddin, M. A., Stranieri, A., Gondal, I., & Balasubramanian, V. (2020). Blockchain leveraged decentralized iot ehealth framework. Internet of Things, 9, 100159.

    Article  Google Scholar 

  55. Uddin, M. A., Stranieri, A., Gondal, I., & Balasubramanian, V. (2019). Blockchain leveraged task migration in body area sensor networks. In 25th Asia-Pacific Conference on Communications (APCC) (Vol. 2019, pp. 177–184). IEEE.

    Chapter  Google Scholar 

  56. Uddin, M. A., Stranieri, A., Gondal, I., & Balasubramanian, V. (2020). Dynamically recommending repositories for health data: A machine learning model. In Proceedings of the Australasian Computer Science Week Multiconference (pp. 1–10). IEEE.

    Google Scholar 

  57. Bharadwaj, H. K., et al. (2021). A review on the role of machine learning in enabling IoT based healthcare applications. IEEE Access, 9, 38859–38890. https://doi.org/10.1109/ACCESS.2021.3059858

    Article  Google Scholar 

  58. Gope, P., Sikdar, B., & Millwood, O. A scalable protocol level approach to prevent machine learning attacks on PUF-based authentication mechanisms for internet-of-medical-things. In IEEE Transactions on Industrial Informatics. IEEE. https://doi.org/10.1109/TII.2021.3096048

  59. I. Ahmed, G. Jeon and F. Piccialli, "A deep-learning-based smart healthcare system for patient’s discomfort detection at the edge of internet of things," in IEEE Internet of Things Journal, vol. 8, 13, pp. 10318–10326, 2021, doi: https://doi.org/10.1109/JIOT.2021.3052067.

    Chapter  Google Scholar 

  60. Sujata, D., Chinmay, C., Sourav, K. G., Subhendu, K. P., & Jaroslav, F. (2021). BIFM: Big-data driven intelligent forecasting model for COVID-19 (pp. 1–13). IEEE Access. https://doi.org/10.1109/ACCESS.2021.3094658

    Book  Google Scholar 

  61. Almalki, F. A., & Soufiene, B. O. (2021). EPPDA: An efficient and privacy-preserving data aggregation scheme with authentication and authorization for IoT-based healthcare applications. Wireless Communications and Mobile Computing, 2021, 5594159., 18 pages. https://doi.org/10.1155/2021/5594159

    Article  Google Scholar 

  62. Almalki, F. A., Othman, S. B., Almalki, F. A., & Sakli, H. (2021). EERP-DPM: Energy efficient routing protocol using dual prediction model for healthcare using IoT. Journal of Healthcare Engineering, 2021, 9988038., 15 pages. https://doi.org/10.1155/2021/9988038

    Article  Google Scholar 

  63. Soufiene, B. O., Bahattab, A. A., Trad, A., & Youssef, H. (2020). PEERP: An priority-based energy-efficient routing protocol for reliable data transmission in healthcare using the IoT. Procedia Computer Science, 175, 373–378. https://doi.org/10.1016/j.procs.2020.07.053

    Article  Google Scholar 

  64. Wang, T., & Chen, H. (2021). A lightweight SDN fingerprint attack defense mechanism based on probabilistic scrambling and controller dynamic scheduling strategies. Security and Communication Networks, 2021, 6688489., 23 pages. https://doi.org/10.1155/2021/6688489

    Article  Google Scholar 

  65. Ahvar, E., Ahvar, S., Raza, S. M., Manuel Sanchez Vilchez, J., & Lee, G. M. (2021). Next generation of SDN in cloud-fog for 5G and beyond-enabled applications: Opportunities and challenges. Network, 1, 28–49. https://doi.org/10.3390/network1010004

    Article  Google Scholar 

  66. Li, Y., Su, X., Ding, A. Y., Lindgren, A., Liu, X., Prehofer, C., Riekki, J., Rahmani, R., Tarkoma, S., & Hui, P. (2020). Enhancing the internet of things with knowledge-driven software-defined networking technology: Future perspectives. Sensors, 20, 3459. https://doi.org/10.3390/s20123459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedi Sakli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mhamdi, H., Othman, S.B., Zouinkhi, A., Sakli, H. (2022). Blockchain Technology in Healthcare: Use Cases Study. In: Chakraborty, C., Khosravi, M.R. (eds) Intelligent Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-16-8150-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8150-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8149-3

  • Online ISBN: 978-981-16-8150-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics