Skip to main content

Bio-Based/Biodegradable Containers for Encapsulation

  • Chapter
  • First Online:
Micro- and Nano-containers for Smart Applications

Part of the book series: Composites Science and Technology ((CST))

  • 491 Accesses

Abstract

The development of biobased carriers to transport sensitive and/or unstable molecules are the novel trends to deliver molecules with different properties and biological uses specially for drug delivery. Natural and synthetic polymers and lipids are in the front line for the development of biocarriers and there are many alternatives since they are commonly available in the market. The present chapter review the state of art of most common natural and synthetic biodegradable polymers and lipids used to develop novel carriers and the main strategies used to encapsulate and/or entrap molecules with beneficial biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Alg:

Alginate

BC:

Bacterial cellulose

BCS:

Biopharmaceutics Classification System

Car:

Carrageenan

Chi:

Chitosan

COL:

Collagen

ECM:

Extracellular matrix

EDTA:

Ethylenediaminetetraacetic

FDA:

Food and Drug Administration (USA)

FTIR:

Fourier Transform Infrared

HA:

Hyaluronic acid

MP:

Microparticle

MW:

Molecular weight

NLC:

Nanostructured lipid carriers

NP:

Nanoparticle

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PGA:

Polyglycolic acid

PLA:

Polylactic acid

SLN:

Solid lipid nanoparticles

References

  1. Agrawal M, Saraf S, Saraf S et al (2020) Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 321:372–415

    Article  CAS  Google Scholar 

  2. Ahmad M, Manzoor K, Singh S, Ikram S (2017) Chitosan centered bionanocomposites for medical specialty and curative applications: a review. Int J Pharm 529:200–217. https://doi.org/10.1016/j.ijpharm.2017.06.079

    Article  CAS  Google Scholar 

  3. Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102. https://doi.org/10.1186/1556-276X-8-102

    Article  CAS  Google Scholar 

  4. Akturk O, Kismet K, Yasti AC, Kuru S, Duymus ME, Kaya F, Caydere M, Hucumenoglu S, Keskin D (2016) Collagen/gold nanoparticle nanocomposites: a potential skin wound healing biomaterial. J Biomater Appl 31:283–301. https://doi.org/10.1177/0885328216644536

    Article  CAS  Google Scholar 

  5. Alcantar NA, Aydil ES, Israelachvili JN (2000) Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res 51:343–351. https://doi.org/10.1002/1097-4636(20000905)51:3%3c343::aid-jbm7%3e3.0.co;2-d

    Article  CAS  Google Scholar 

  6. Amoabediny G, Haghiralsadat F, Naderinezhad S et al (2018) Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: a comprehensive review. Int J Polym Mater Polym Biomater 67:383–400

    Article  CAS  Google Scholar 

  7. Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667. https://doi.org/10.1016/j.progpolymsci.2014.02.008

    Article  CAS  Google Scholar 

  8. Aparicio-Blanco J, Sebastián V, Benoit JP, Torres-Suárez AI (2019) Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: in vitro screening of critical parameters. Eur J Pharm Biopharm 134:126–137. https://doi.org/10.1016/j.ejpb.2018.11.020

    Article  CAS  Google Scholar 

  9. Ashammakhi N, Rokkanen P (1997) Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18:3–9. https://doi.org/10.1016/s0142-9612(96)00107-x

    Article  CAS  Google Scholar 

  10. Bassetti M, Ginocchio F, Mikulska M (2011) New treatment options against Gram negative organisms. Crit Care 15:215. https://doi.org/10.1186/cc9997

    Article  Google Scholar 

  11. Bayón B, Rivero Berti I, Gagneten AM, Castro GR (2018) Biopolymers from wastes to high-value products in biomedicine. In: Singhania RR, Agarwal RA, Praveen Kumar R, Sukumaran RK (eds) Waste to wealth. Springer Nature, Singapore, pp1–44. ISBN 978–981–10–7430–1

    Google Scholar 

  12. Bielecki S, Kalinowska H, Krystynowicz A, Kubiak K Kołodziejczyk M, de Groeve M (2012) Wound dressings and cosmetic materials from bacterial nanocellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton, pp 157–174. ISBN 978-1-4398-6992-5

    Google Scholar 

  13. Bueloni B, Sanna D, Garribba E, Castro GR, León IE, Islan GA (2020) Design of nalidixic acid-vanadium complex loaded into chitosan hybrid nanoparticles as smart strategy to inhibit bacterial growth and quorum sensing. Int J Biol Macromol 161:1568–1580. https://doi.org/10.1016/j.ijbiomac.2020.07.304

  14. Buie T, McCune J, Cosgriff-Hernandez E (2020) Gelatin matrices for growth factor sequestration. Trends Biotechnol 38:546–557. https://doi.org/10.1016/j.tibtech.2019.12.005

    Article  CAS  Google Scholar 

  15. Builders PF, Arhewoh MI (2016) Pharmaceutical applications of native starch in conventional drug delivery. Starch 68:64–873. https://doi.org/10.1002/star.201500337

    Article  CAS  Google Scholar 

  16. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56. https://doi.org/10.1002/adma.201003963

    Article  CAS  Google Scholar 

  17. Brzeziński M, Seiffert S (2015) Monodisperse microspheres from supramolecular complexing polylactides. Mat Lett 161: 471–475. https://doi.org/10.1016/j.matlet.2015.09.008

  18. Cacicedo ML, Cesca K, Bosio VE, Porto LM, Castro GR (2015) Self-assembly of carrageenin–CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained. J Appl Biomed 13:239–248. https://doi.org/10.1016/j.jab.2015.03.004

    Article  Google Scholar 

  19. Cacicedo ML, Islan GA, Drachemberg MF, Alvarez VA, Bartel L, Bolzan AD, Castro GR (2018) Hybrid bacterial cellulose-pectin films for delivery of bioactive molecules. New J Chem 42: 7457–7467. https://doi.org/10.1039/C7NJ03973E

  20. Campo VL, Kawano DF, Braz da Silva Jr D, Carvalho I (2009) Carrageenans: biological properties, chemical modifications, and structural analysis—a review. Carbohydr Polym 77:167–180. https://doi.org/10.1016/j.carbpol.2009.01.020

  21. Casalini T, Filippo Rossi F, Castrovinci A, Perale G (2019) A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol 7:259. https://doi.org/10.3389/fbioe.2019.00259

    Article  Google Scholar 

  22. Castro GR, Bora E, Panilaitis B, Kaplan DL (2006) Emulsan coated alginate microspheres as a new vehicle for protein delivery. Chapter 2. In: Khemani K, Scholz C (eds) Degradable polymers and materials. American Chemical Society Symposium Series № 939. Oxford University Press, Washington, USA, pp 14–29. https://doi.org/10.1021/bk-2006-0939.ch002. ISBN-10: 084123972X

  23. Chen J, Chen L, Xie F, Li X (2019) Drug delivery applications of starch biopolymer derivatives. Springer Nature Singapore Pte Ltd, p 147. ISBN: 978–981–13–3657–7

    Google Scholar 

  24. Christen MO, Vercesi F (2020) Polycaprolactone: how a well-known and futuristic polymer has become an innovative collagen-stimulator in esthetics. Clin Cosmet Investig Dermatol 13:31–48. https://doi.org/10.2147/CCID.S229054

    Article  CAS  Google Scholar 

  25. Cieślik M, Mertas A, Morawska-Chochół A et al (2009) The evaluation of the possibilities of using PLGA co-polymer and its composites with carbon fibers or hydroxyapatite in the bone tissue regeneration process—in vitro and in vivo examinations. Int J Mol Sci 10:3224–3234. https://doi.org/10.3390/ijms10073224

    Article  CAS  Google Scholar 

  26. Courant T, Bayon E, Reynaud-Dougier HL et al (2017) Tailoring nanostructured lipid carriers for the delivery of protein antigens: physicochemical properties versus immunogenicity studies. Biomaterials 136:29–42. https://doi.org/10.1016/j.biomaterials.2017.05.001

    Article  CAS  Google Scholar 

  27. Dave V, Tak K, Sohgaura A et al (2019) Lipid-polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J Microbiol Methods 160:130–142

    Article  CAS  Google Scholar 

  28. Dimond PF (2005) Using nanotechnologies in biotech and medicine. Gen Eng News 25: 21. Website: https://www.genengnews.com/magazine/21/using-nanotechnologies-in-biotech-and-medicine/

  29. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112

    Article  CAS  Google Scholar 

  30. Doktorovová S, Kovačević AB, Garcia ML, Souto EB (2016) Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm 108:235–252. https://doi.org/10.1016/j.ejpb.2016.08.001

    Article  CAS  Google Scholar 

  31. Douglas KL, Piccirillo CA, Tabrizian M (2006) Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. J Control Release 115:354–361. https://doi.org/10.1016/j.jconrel.2006.08.021

    Article  CAS  Google Scholar 

  32. Du Q, Chen J, Yan G et al (2019) Comparison of different aliphatic acid grafted N-trimethyl chitosan surface-modified nanostructured lipid carriers for improved oral kaempferol delivery. Int J Pharm 568:118506. https://doi.org/10.1016/j.ijpharm.2019.118506

    Article  CAS  Google Scholar 

  33. Dumont C, Bourgeois S, Fessi H, Jannin V (2018) Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int J Pharm 541:117–135

    Article  CAS  Google Scholar 

  34. Duran N, Bosio VE, Frate L, Castro GR (2014) Nanobiotechnology: prospects and perspectives. In: Govil JN (ed) Recent developments in biotechnology, vol 10. Chapter 1024. Studium Press (Tx, U.S.A.), pp 1–48. ISSN: 1–62699–015–8

    Google Scholar 

  35. Ehlinger C, Spear N, Doddareddy R, Shankar G, Schantz A (2019) A generic method for the detection of polyethylene glycol specific IgG and IgM antibodies in human serum. J Immunol Methods 474:112669. https://doi.org/10.1016/j.jim.2019.112669

    Article  CAS  Google Scholar 

  36. Fakruddin Md, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:31. http://www.jnanobiotechnology.com/content/10/1/31

  37. Garcês A, Amaral MH, Sousa Lobo JM, Silva AC (2018) Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci 112:159–167

    Article  Google Scholar 

  38. Gartziandia O, Herrán E, Ruiz-Ortega JA et al (2016) Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J Biomed Nanotechnol 12:2220–2230. https://doi.org/10.1166/jbn.2016.2313

    Article  CAS  Google Scholar 

  39. Ghalia MA, Dahman Y (2017) Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. J Polym Res 24(5):74. https://doi.org/10.1007/s10965-017-1227-2

    Article  CAS  Google Scholar 

  40. Göppert TM, Müller RH (2005) Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm 60:361–372. https://doi.org/10.1016/j.ejpb.2005.02.006

    Article  CAS  Google Scholar 

  41. Gordillo-Galeano A, Mora-Huertas CE (2018) Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 133:285–308

    Article  CAS  Google Scholar 

  42. Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7:1041–1053. https://doi.org/10.1517/14656566.7.8.1041

    Article  CAS  Google Scholar 

  43. Guarino V, Gentile G, Sorrentino L, Ambrosio L (2017) Polycaprolactone: synthesis, properties, and applications. In: Mark HF (ed) Encyclopedia of polymer science and technology, pp 1–36. https://doi.org/10.1002/0471440264.pst658

  44. Hart ML, Do DP, Ansari RA, Rizvi SAA (2013) Brief overview of various approaches to enhance drug solubility. J Develop Drugs 2:3. https://doi.org/10.4172/2329-6631.1000115

    Article  CAS  Google Scholar 

  45. Hathout RM, Metwally AA (2019) Gelatin nanoparticles. In: Weissig V, Elbayoumi T (eds) Pharmaceutical nanotechnology. Methods in molecular biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_6

  46. Hodgson J (2001) ADMET—turning chemicals into drugs. Nat Biotechnol 19:722–726. https://doi.org/10.1038/90761

    Article  CAS  Google Scholar 

  47. Islan GA, Tornello PC, Abraham GA et al (2016) Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surfaces B Biointerfaces 143:168–176. https://doi.org/10.1016/j.colsurfb.2016.03.040

    Article  CAS  Google Scholar 

  48. Islan GA, Saldaña SM, Chevalier MT, Alvarez VA, Castro GR (2018). Nanotechnology and drug delivery—Chapter 7. In: Talevi A, Quiroga P (eds) ADME processes in pharmaceutical sciences. Springer, Switzerland, pp 135–165. ISBN: 978–3–319–99593–9

    Google Scholar 

  49. Jackson JK, Letchford K, Wasserman BZ et al (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321–330. https://doi.org/10.2147/ijn.s16749

    Article  CAS  Google Scholar 

  50. Jain A, Singh SK, Arya SK et al (2018) Protein nanoparticles: promising platforms for drug delivery applications. ACS Biomater Sci Eng 4:3939–3961

    Article  CAS  Google Scholar 

  51. Jaiswal P, Gidwani B, Vyas A (2016) Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells, Nanomedicine Biotechnol 44:27–40

    Article  CAS  Google Scholar 

  52. Kim H, Shin M, Han S, Kwon W, Hahn SK (2019) Hyaluronic acid derivatives for translational medicines. Biomacromolecules 20:2889–2903. https://doi.org/10.1021/acs.biomac.9b00564

  53. Kim YM, Lee YS, Kim T et al (2020) Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydr Polym 247:116684. https://doi.org/10.1016/j.carbpol.2020.116684

    Article  CAS  Google Scholar 

  54. Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol 624:249–265. https://doi.org/10.1007/978-1-60761-609-2_17

    Article  CAS  Google Scholar 

  55. Lee SG, Kim CH, Sung SW et al (2018) RIPL peptide-conjugated nanostructured lipid carriers for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Int J Nanomedicine 13:3263–3278. https://doi.org/10.2147/IJN.S166021

    Article  CAS  Google Scholar 

  56. Li Z, Mei S, Dong Y, She F, Li Y, Li P, Kong L (2020) Functional nanofibrous biomaterials of tailored structures for drug delivery—a critical review. Pharmaceutics 2:522. https://doi.org/10.3390/pharmaceutics12060522

    Article  CAS  Google Scholar 

  57. Ling Tan JS, Roberts CJ, Billa N (2019) Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol 24:504–512. https://doi.org/10.1080/10837450.2018.1515225

    Article  CAS  Google Scholar 

  58. Liu D, Liu F, Liu Z et al (2011) Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol Pharm 8:2291–2301. https://doi.org/10.1021/mp200402e

    Article  CAS  Google Scholar 

  59. Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621. https://doi.org/10.1111/j.2042-7158.2010.01030.x

    Article  CAS  Google Scholar 

  60. Marras-Marquez T, Peña J, Veiga-Ochoa MD (2015) Robust and versatile pectin-based drug delivery systems. Int J Pharm 479:265–276. https://doi.org/10.1016/j.ijpharm.2014.12.045

    Article  CAS  Google Scholar 

  61. Matougui N, Boge L, Groo AC et al (2016) Lipid-based nanoformulations for peptide delivery. Int J Pharm 502:80–97

    Article  CAS  Google Scholar 

  62. Miao J, Zhang XG, Hong Y et al (2012) Inhibition on hepatitis B virus e-gene expression of 10–23 DNAzyme delivered by novel chitosan oligosaccharide-stearic acid micelles. Carbohydr Polym 87:1342–1347. https://doi.org/10.1016/j.carbpol.2011.09.022

    Article  CAS  Google Scholar 

  63. Murata Y, Sasaki N, Miyamoto E, Kawashima S (2000) Use of floating alginate gel beads for stomach-specific drug delivery. Eur J Pharm Biopharm 50:221–226. https://doi.org/10.1016/s0939-6411(00)00110-7

    Article  CAS  Google Scholar 

  64. Navarro L, Mogosanu DE, Ceaglio N, Luna J, Dubruel P, Rintoul I (2017) Novel poly (diol sebacates) as additives to modify Paclitaxel release from poly (lactic-co-glycolic acid) thin films. J Pharm Sci 106:2106–2114. https://doi.org/10.1016/j.xphs.2017.05.012

    Article  CAS  Google Scholar 

  65. Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 190:451–464

    Article  CAS  Google Scholar 

  66. Noreen A, Nazli Z-I-H, Akram J, Rasul I, Mansha A, Yaqoob N, Iqbal R, Tabasum S, Zuber M, Zia KM (2017) Pectins functionalized biomaterials; a new viable approach for biomedical applications: a review. Int J Biol Macromol 101:254–272. https://doi.org/10.1016/j.ijbiomac.2017.03.029

    Article  CAS  Google Scholar 

  67. Odeniyi MA, Omoteso OA, Adepoju AO, Jaiyeoba KT (2018) Starch nanoparticles in drug delivery: a review. Polim Med 48:41–45. https://doi.org/10.17219/pim/99993

    Article  Google Scholar 

  68. Oshiro-Junior JA, Sato MR, Boni FI et al (2020) Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater Sci Eng C 108:110462. https://doi.org/10.1016/j.msec.2019.110462

    Article  CAS  Google Scholar 

  69. Pandey A (2020) Solid lipid nanoparticles: a multidimensional drug delivery system. In: Daima HK, PN N, Ranjan S, et al (eds) Nanoscience in medicine, vol 1. Springer International Publishing, Cham, pp 249–295

    Google Scholar 

  70. Parker RN, Wu W, McKay TB, Xu Q, Kaplan DL (2019) Design of silk-elastin-like protein nanoparticle systems with mucoadhesive properties. J Funct Biomater 10(4):49. https://doi.org/10.3390/jfb10040049

    Article  CAS  Google Scholar 

  71. Parker RN, Cairns D, Wu WA, Jordan KE, Guo C, Huang W, MartĂ­n-Moldes Z, Kaplan DL (2020) Smart material hydrogel transfer devices fabricated with stimuli-responsive silk-elastin-like proteins. Adv Healtc Mater 9(11):e2000266. https://doi.org/10.1002/adhm.202000266

    Article  CAS  Google Scholar 

  72. Picheth G, Pirich CL, Sierakowski MR, Woehl M, Sakakibara CN, de Souza CF, Martina A, da Silva R, Alves de Freitas R (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106. https://doi.org/10.1016/j.ijbiomac.2017.05.171

    Article  CAS  Google Scholar 

  73. Pihlajamäki H, Tynninen O, Karjalainen P, Rokkanen P (2008) Enveloping bioabsorbable polyglycolide membrane and immobilization in Achilles tendon repair: a comparative experimental study on rabbits. J Orthop Res 26:264–270. https://doi.org/10.1002/jor.20504

    Article  Google Scholar 

  74. Poonia N, Kaur Narang J, Lather V et al (2019) Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation. Colloids Surfaces B Biointerfaces 181:756–766. https://doi.org/10.1016/j.colsurfb.2019.06.004

    Article  CAS  Google Scholar 

  75. Rehm BHA (2009) Alginates: biology and applications. In: Rehm BHA (ed). Springer, Dordrecht, p 269. ISSN 1862–5576

    Google Scholar 

  76. Rivero Berti I, Rodenak-Kladniew B, Perez AA et al (2019) Development of biocarrier for violacein controlled release in the treatment of cancer. React Funct Polym 136:122–130. https://doi.org/10.1016/j.reactfunctpolym.2019.01.001

    Article  CAS  Google Scholar 

  77. Rivero Berti I, Rodenak-Kladniew B, Onaindia C et al (2020) Assessment of in vitro cytotoxicity of imidazole ionic liquids and inclusion in targeted drug carriers containing violacein. RSC Adv 10:29336–29346. https://doi.org/10.1039/d0ra05101b

    Article  CAS  Google Scholar 

  78. Rodenak-Kladniew B, Islan GA, de Bravo MG et al (2017) Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surfaces B Biointerfaces 154:123–132. https://doi.org/10.1016/j.colsurfb.2017.03.021

    Article  CAS  Google Scholar 

  79. Salvatore L, Gallo N, Natali ML, Campa L, Lunetti P Madaghiele M, Blasi FS, Corallo A, Capobianco L, Sannino A (2020) Marine collagen and its derivatives: versatile and sustainable bio-resources for healthcare. Mat Sci Eng C 113:110963. https://doi.org/10.1016/j.msec.2020.110963

  80. Sarkar A, PĂ©rez S (2012) PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides. BMC Bioinformatics 13:302. https://doi.org/10.1186/1471-2105-13-302

    Article  CAS  Google Scholar 

  81. Saska S, Teixeira LN, de Castro Raucci LMS et al (2017) Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol 103:467–476. https://doi.org/10.1016/j.ijbiomac.2017.05.086

    Article  CAS  Google Scholar 

  82. Seabra AB, Bernardes JS, Fávaro WJ et al (2018) Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohydr Polym 181:514–527

    Article  CAS  Google Scholar 

  83. Selmi TA, Verdonk P, Chambat P, Dubrana F, Potel JF, Barnouin L, Neyret P (2008) Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J Bone Joint Surg Br 90:597–604. https://doi.org/10.1302/0301-620X.90B5.20360

    Article  CAS  Google Scholar 

  84. Schellekens H, Hennink WE, Brinks V (2013) The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res 30:1729–1734. https://doi.org/10.1007/s11095-013-1067-7

    Article  CAS  Google Scholar 

  85. Shao Z, Shao J, Tan B et al (2015) Targeted lung cancer therapy: Preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomedicine 10:1223–1233. https://doi.org/10.2147/IJN.S77837

    Article  CAS  Google Scholar 

  86. Shirodkar RK, Kumar L, Mutalik S, Lewis S (2019) Solid lipid nanoparticles and nanostructured lipid carriers: emerging lipid based drug delivery systems. Pharm Chem J 53:440–453. https://doi.org/10.1007/s11094-019-02017-9

    Article  CAS  Google Scholar 

  87. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127:1612–1626. https://doi.org/10.1111/jam.14290

    Article  CAS  Google Scholar 

  88. Subramaniam B, Siddik ZH, Nagoor NH (2020) Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanoparticle Res 22

    Google Scholar 

  89. Sudhakar S, Chandran SV, Selvamurugan N, Nazeer RA (2020) Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol 150:281–288. https://doi.org/10.1016/j.ijbiomac.2020.02.079

    Article  CAS  Google Scholar 

  90. Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX et al (2006) A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm 3:631–643. https://doi.org/10.1021/mp0600182

    Article  CAS  Google Scholar 

  91. Tang L, Lin F, Li T et al (2018) Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery. Cellulose 25:4525–4536. https://doi.org/10.1007/s10570-018-1904-2

    Article  CAS  Google Scholar 

  92. Taymouri S, Alem M, Varshosaz J et al (2019) Biotin decorated sunitinib loaded nanostructured lipid carriers for tumor targeted chemotherapy of lung cancer. J Drug Deliv Sci Technol 50:237–247. https://doi.org/10.1016/j.jddst.2019.01.024

    Article  CAS  Google Scholar 

  93. Tiwari S, Bahadur P (2019) Modified hyaluronic acid-based materials for biomedical applications. Int J Biol Macromol 121:556–571. https://doi.org/10.1016/j.ijbiomac.2018.10.049

    Article  CAS  Google Scholar 

  94. Toniato TV, Stocco TD, Martins D, Dos S, et al (2020) Hybrid chitosan/amniotic membrane-based hydrogels for articular cartilage tissue engineering application. Int J Polym Mater Polym Biomater 69:961–970. https://doi.org/10.1080/00914037.2019.1636249

  95. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864. https://doi.org/10.1002/polb.22259

    Article  CAS  Google Scholar 

  96. Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22:315–329. https://doi.org/10.2165/00063030-200822050-00004

    Article  CAS  Google Scholar 

  97. Vlasova IM, Saletsky AM (2010) Raman spectroscopy in investigations of secondary structure of human serum albumin at binding of nanomarkers of fluorescein family. Laser Phys 20:1844–1848. https://doi.org/10.1134/S1054660X10170160

    Article  CAS  Google Scholar 

  98. Weber S, Zimmer A, Pardeike J (2014) Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86:7–22

    Article  CAS  Google Scholar 

  99. Wu H, Liu S, Xiao L, Dong X, Lu Q, Kaplan DL (2016) Injectable and pH-responsive silk nanofiber hydrogels for sustained anticancer drug delivery. ACS Appl Mater Interfaces 8:17118–17126. https://doi.org/10.1021/acsami.6b04424

    Article  CAS  Google Scholar 

  100. Yang XY, Li YX, Li M, et al (2013) Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett 334:338–345. https://doi.org/10.1016/j.canlet.2012.07.002

  101. Yermak IM, Barabanova AO, Aminin DL et al (2012) Effects of structural peculiarities of carrageenans on their immunomodulatory and anticoagulant activities. Carbohydr Polym 87:713–720. https://doi.org/10.1016/j.carbpol.2011.08.053

    Article  CAS  Google Scholar 

  102. Yucel T, Lovett ML, Giangregorio R, Coonahan E, Kaplan DL (2014) Silk fibroin rods for sustained delivery of breast cancer therapeutics. Biomaterials 35:8613–8620. https://doi.org/10.1016/j.biomaterials.2014.06.030

    Article  CAS  Google Scholar 

  103. Zewail M, Nafee N, Helmy MW, Boraie N (2019) Coated nanostructured lipid carriers targeting the joints—an effective and safe approach for the oral management of rheumatoid arthritis. Int J Pharm 567:118447. https://doi.org/10.1016/j.ijpharm.2019.118447

    Article  CAS  Google Scholar 

  104. Zhang F, King MW (2020) Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Adv Healthc Mater 9:1901358

    Article  CAS  Google Scholar 

  105. Zhang J, Xiao X, Zhu J et al (2018) Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int J Nanomedicine 13:3039–3051. https://doi.org/10.2147/IJN.S161163

    Article  CAS  Google Scholar 

  106. Zhang W, Mahuta KM, Mikulski BA et al (2016) Novel pectin-based carriers for colonic drug delivery. Pharm Dev Technol 21:127–130. https://doi.org/10.3109/10837450.2014.965327

    Article  CAS  Google Scholar 

  107. Zhao X, Han Y, Li J et al (2017) BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth. Mater Sci Eng C 78:658–666. https://doi.org/10.1016/j.msec.2017.03.186

    Article  CAS  Google Scholar 

  108. Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T et al. (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28:2413–2419. https://doi.org/10.1093/nar/28.12.2413

  109. Zhou X, Huang L, Porter A, Vicente-Gomila JM (2019) Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles. Technol Forecast Soc Change 146:785–794. https://doi.org/10.1016/j.techfore.2018.04.026

    Article  Google Scholar 

Further Reading

  1. Poole-Warren L, Martens P, Green R (eds) (2018) Biosynthetic polymers for medical applications. Elsevier, Amsterdam, The Netherlands, p 338

    Google Scholar 

  2. Siepmann J, Siegel RA, Rathbone MJ (eds) (2012) Fundamentals and applications of controlled release drug delivery. Springer, NY, USA, p 607

    Google Scholar 

  3. Thakur R, Singh R, Laverty G, Donnelly R (eds) (2018) Hydrogels, design, synthesis and application in drug delivery and regenerative medicine. CRC Press, FL, USA, p 353

    Google Scholar 

  4. Raza Shah M, Imran M, Ullah S (eds) (2017) Lipid-based nanocarriers for drug delivery and diagnosis. Elsevier, Kidlington, U.K., p 354

    Google Scholar 

  5. Castro GR, Kumar A, Nguyen TA, Qi X, Yasin G (eds) (2020) Nanomaterials for biocatalysis. In press. Elsevier, Amsterdam

    Google Scholar 

  6. Alonso MJ, Csaba NS (eds) (2012) Nanostructured biomaterials for overcoming biological barriers. Royal Society of Chemistry, Cambridge, UK, p 643

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berti, I.R., Castro, G.R. (2022). Bio-Based/Biodegradable Containers for Encapsulation. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_4

Download citation

Publish with us

Policies and ethics