Skip to main content

Comprehensive Literature Survey for mm-Wave Massive MIMO Using Machine Learning for 6G

  • Conference paper
  • First Online:
ICCCE 2021

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 828))

Abstract

Sixth Generation (6G) wireless communication networks are highly trained and more capable to overcome the limitations of Fifth Generation (5G) wireless networks. 6G will be expected to fulfil the demands of users from all aspects such as data rate, latency, security, privacy, and so on. Millimetre Wave (mm-wave) massive Multiple inputs multiple outputs (MIMO) will continue to contribute the benefits of higher data rate and better connectivity in 6G wireless systems. Machine learning (ML) is important for mm-wave Massive MIMO, because of its wide range of applications and its incredible ability to adapt and provide solutions to complex problems efficiently, effectively, and quickly. This paper presents the comprehensive literature survey which comprises of how to use the ML/Deep Learning (DL) techniques for the physical layer to optimize different parameters like channel coding and modulation, synchronization, beamforming, positioning, and channel estimation. DL techniques are most suitable for the physical layer to optimized better performance in Bit Error Rate (BER), Symbol Error Rate (SER), and Signal to Noise Ratio (SNR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giordani M, Polese M, Mezzavilla M et al (2020) Towards 6G networks: use cases and technologies. IEEE Commun Mag 58:55–61. https://doi.org/10.1109/MCOM.001.1900411

    Article  Google Scholar 

  2. Mumtaz S, Miquel Jornet J, Aulin J et al (2017) Terahertz communication for vehicular networks. IEEE Trans Veh Technol 66:5617–5625. https://doi.org/10.1109/TVT.2017.2712878

    Article  Google Scholar 

  3. Zhang Z, Xiao Y, Ma Z et al (2019) 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh Technol Mag 14:28–41. https://doi.org/10.1109/MVT.2019.2921208

  4. Mz C, Md S, Ahmed S et al (2020) 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J Commun Soc 1:957–975. https://doi.org/10.1109/OJCOMS.2020.3010270

  5. Wang C, Haider F, Gao X et al (2014) Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag 52:122–130. https://doi.org/10.1109/MCOM.2014.6736752

    Article  Google Scholar 

  6. Botsinis P, Babar Z, Alanis D et al (2019) Quantum search algorithms for wireless communications. IEEE Commun Surv Tutorials 21:1209–1242. https://doi.org/10.1109/COMST.2018.2882385

    Article  Google Scholar 

  7. Rappaport T, Sun S, Mayzus R et al (2013) Millimetre-wave mobile communications for 5G cellular: it will work! IEEE Access 1:335–349. https://doi.org/10.1109/ACCESS.2013.2260813

  8. Gao H, Su Y, Zhang S et al (2019) Antenna selection and power allocation design for 5G massive MIMO uplink networks. China Commun 16:1–15. https://doi.org/10.12676/j.cc.2019.04.001

    Article  Google Scholar 

  9. Andrieu C, De Freitas N, Doucet A et al (2003) An introduction to MCMC for machine learning. Mach Learn 50:5–43. https://doi.org/10.1023/A:1020281327116

    Article  MATH  Google Scholar 

  10. O’Shea T, Hoydis J (2017) An introduction to deep learning for the physical layer. IEEE Trans Cogn Commun Networking 3:563–575. https://doi.org/10.1109/TCCN.2017.2758370

    Article  Google Scholar 

  11. Khan L, Yaqoob I, Han Z et al (2020) 6G Wireless systems: a vision, architectural elements, and future directions. IEEE Access 8:147029–147044. https://doi.org/10.1109/ACCESS.2020.3015289

    Article  Google Scholar 

  12. Kaur J, Khan M, Iftikhar M et al (2021) Machine learning techniques for 5G and beyond. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3051557

    Article  Google Scholar 

  13. Zhang L, Tan J, Liang YC et al (2019) Deep reinforcement learning based modulation and coding scheme selection in cognitive heterogeneous networks. IEEE Trans Wirel Commun 18:3281–3294. https://doi.org/10.1109/TWC.2019.2912754

    Article  Google Scholar 

  14. Fritschek R, Schaefer RF, Wunder G et al (2020) Neural mutual information estimation for channel coding: state-of-the-art estimators, analysis, and performance comparison. In: IEEE 21st International workshop on signal processing advances in wireless communications (SPAWC). https://doi.org/10.1109/SPAWC48557.2020.9154239

  15. Carpi F, Hager C, Martalo M et al (2019) Reinforcement learning for channel coding: learned bit-flipping decoding. In: IEEE 57th Annual Allerton conference on communication, control, and computing (Allerton). https://doi.org/10.1109/ALLERTON.2019.8919799

  16. Wang Y, Liu W, Fang L (2020) Adaptive modulation and coding technology in 5G system. In: IEEE 2020 International wireless communications and mobile computing (IWCMC). https://doi.org/10.1109/IWCMC48107.2020.9148457

  17. Huang L, Zhang Q, Zhang L et al (2020) Efficiency enhancement for underwater adaptive modulation and coding systems: via sparse principal component analysis. IEEE Commun Lett 24:1808–1811. https://doi.org/10.1109/LCOMM.2020.2990188

    Article  Google Scholar 

  18. Hermawan A, Ginanjar R, Kim DS et al (2020) CNN-based automatic modulation classification for beyond 5G communications. IEEE Commun Lett 24:1038–1041. https://doi.org/10.1109/LCOMM.2020.2970922

    Article  Google Scholar 

  19. Huang J, Diamant R (2020) Adaptive modulation for long-range underwater acoustic communication. IEEE Trans Wirel Commun 19:6844–6857. https://doi.org/10.1109/TWC.2020.3006230

    Article  Google Scholar 

  20. Chen Q, Chen X, Zhang S et al (2020) Energy-efficient adaptive modulation and data schedule for delay-sensitive wireless communications. IEEE Access 8(38123):38135. https://doi.org/10.1109/ACCESS.2020.2974755

    Article  Google Scholar 

  21. Rivera I, Sean K (2020) 5G satellite-cellular coexistence: SER analysis toward coordinated adaptive modulation. In: IEEE Green energy and smart systems conference (IGESSC). https://doi.org/10.1109/IGESSC50231.2020.9285096

  22. Gomes R, Tuset-Peiro P, Vilajosana X (2020) Improving link reliability of IEEE 802.15.4g SUN with adaptive modulation diversity. In: IEEE 31st Annual international symposium on personal, indoor and mobile radio communications. https://doi.org/10.1109/PIMRC48278.2020.9217301

  23. Wu H, Sun Z, Zhou X (2019) Deep learning-based frame and timing synchronization for end-to-end communications. J Phys 3rd Int Conf Image Signal Process IOP Publishing 1169:1–6. https://doi.org/10.1088/1742-6596/1169/1/012060

  24. Schmitz J, Lengerke C, Airee N et al (2019) A deep learning wireless transceiver with fully learned modulation and synchronization. In: IEEE International conference on communications workshops (ICC Workshops). https://doi.org/10.1109/ICCW.2019.8757051

  25. Ali S, Saad W, Steinbach D et al (2020) 6G White paper on machine learning in wireless communication networks. 6G white paper, University of Oulu, Finland. https://arxiv.org/pdf/2004.13875

  26. Wei X, Hu C, Dai L (2020) Deep learning for beamspace channel estimation in millimetre-wave massive MIMO systems. IEEE Trans Commun 69:182–193. https://doi.org/10.1109/TCOMM.2020.3027027

    Article  Google Scholar 

  27. Elbir A, Papazafeiropoulos A, Kourtessis P et al (2020) Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems. IEEE Wirel Commun Lett 9:1447–1451. https://doi.org/10.1109/LWC.2020.2993699

    Article  Google Scholar 

  28. Jia C, Gao H, Chen N et al (2020) Machine learning empowered beam management for intelligent reflecting surface assisted mm wave networks. IEEE China Commun 17:100–114. https://doi.org/10.23919/JCC.2020.10.007

    Article  Google Scholar 

  29. Lin T, Zhu Y (2019) Beamforming design for large-scale antenna arrays using deep learning. IEEE Wirel Commun Lett 9:103–107. https://doi.org/10.1109/LWC.2019.2943466

    Article  Google Scholar 

  30. Elbir A (2019) CNN-based precoder and combiner design in mm-wave MIMO systems. IEEE Commun Lett 23:1240–1243. https://doi.org/10.1109/LCOMM.2019.2915977

    Article  Google Scholar 

  31. Peken T, Adiga S, Tandon R et al (2020) Deep learning for SVD and hybrid beamforming. IEEE Trans Wirel Commun 19:6621–6642. https://doi.org/10.1109/TWC.2020.3004386

    Article  Google Scholar 

  32. Xia W, Zheng G, Zhu Y et al (2020) A deep learning framework for optimization of MISO downlink beamforming. IEEE Trans Commun 68:1866–1880. https://doi.org/10.1109/TCOMM.2019.2960361

    Article  Google Scholar 

  33. Bogale T, Wang X, Le L (2020) Adaptive channel prediction, beamforming & scheduling design for 5G V2I network: analytical and machine learning approaches. IEEE Trans Veh Technol 69:5055–5067. https://doi.org/10.1109/TVT.2020.2975818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Devnikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devnikar, R., Hendre, V. (2022). Comprehensive Literature Survey for mm-Wave Massive MIMO Using Machine Learning for 6G. In: Kumar, A., Mozar, S. (eds) ICCCE 2021. Lecture Notes in Electrical Engineering, vol 828. Springer, Singapore. https://doi.org/10.1007/978-981-16-7985-8_80

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7985-8_80

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7984-1

  • Online ISBN: 978-981-16-7985-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics