Skip to main content

Metal–Organic Frameworks as Promising Catalysts for CO2 Capture and Fixation

  • Chapter
  • First Online:
Metal-Organic Frameworks (MOFs) as Catalysts

Abstract

Alarming CO2 emission is a cause of global warming, and its capture is nowadays a topical issue in mitigating global warming, sustainable development, and environmental protection. Considerable work has been done on the manufacturing of novel and promising adsorbents for CO2 capture. Microporous and nanoporous adsorbents such as zeolites and metal–organic frameworks (MOFs) are reported in the literature for capturing CO2. Very interestingly, MOFs usually offer exceptional water stability, high surface area, thermal stability, porous nature, and ease of surface modification. MOFs act as a potential candidate for storage, catalysis, separation, and other widespread potential applications. MOFs offer high selectivity for CO2 capture not only due to high surface area but also due to high heat of adsorption. However, the number of MOFs developed to date is extremely high and acts as an ideal candidate for high-performance CO2 capture. This chapter represents the summarized study of MOFs for CO2 capture. Additionally, various strategies including functionalization of MOFs, N-doping, and metal-doping in MOFs are discussed for enhancing capture performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MOFs:

Metal–organic frameworks

IPCC:

Intergovernmental Panel on Climate Change

ppm:

Part per million

SBUs:

Secondary building units

Å:

Angstrom

ASU:

Air separation unit

CPU:

CO2 processing unit

ZIF:

Zeolitic imidazolate framework

TED:

Triethylenediamine

PAET:

Poly(3-acetoxyethylthiophene

FDA-DAM:

Hexafluoropropane dianhydride-diaminomesitylene

TEPA:

Tetraethylenepentamine

COF:

Covalent organic frameworks

MIL:

Matériaux de l′Institut Lavoisier

CO2:

Carbon dioxide

N2:

Nitrogen

CH4:

Methane

H2:

Hydrogen

CO:

Carbon monoxide

CH3OH:

Methanol

HCOOH:

Formic acid

C2H4:

Ethylene

HCHO:

Formaldehyde

HCOO:

Formate

VSA:

Vacuum oscillatory absorption

PSA:

Pressure oscillatory absorption

TSA:

Temperature oscillatory absorption

References

  1. Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report (Book) | ETDEWEB (no date). Available at: https://www.osti.gov/etdeweb/biblio/944235 Accessed 1 Aug 2021

  2. Al-Maythalony BA et al (2017) Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes. ACS Appl Mater Interfaces 9(39):33401–33407. https://doi.org/10.1021/ACSAMI.6B15803

    Article  CAS  PubMed  Google Scholar 

  3. An J et al (2009) Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle. J Am Chem Soc 131(24):8401–8403. https://doi.org/10.1021/JA901869M

  4. Asgari M, Queen W (2018) Carbon Capture in etal–Organic rameworks; Wiley: Hoboken, NJ, USA, 1–78

    Google Scholar 

  5. Babarao R, Jiang JW (2010) Cation characterization and CO2 capture in Li+-exchanged metal−organic frameworks: from first-principles modeling to molecular simulation†. Ind Eng Chem Res 50(1):62–68. https://doi.org/10.1021/IE100214A

  6. Bae T-H, Long JR (2013) CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ Sci 6(12):3565–3569. https://doi.org/10.1039/C3EE42394H

    Article  CAS  Google Scholar 

  7. Bataille T et al (2012) Solvent dependent synthesis of micro- and nano- crystalline phosphinate based 1D tubular MOF: structure and CO2 adsorption selectivity. CrystEngComm 14(21):7170–7173. https://doi.org/10.1039/C2CE26138C

    Article  CAS  Google Scholar 

  8. Bates, B.C., Z.W. Kundzewicz S Wu JP Palutikof E (2008) Climate change and water: climate change 2007: synthesis report. Available at: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_full_report.pdf Accessed: 1 August 2021

  9. Belmabkhout Y et al (2017) Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S. J Mater Chem A 5(7):3293–3303. https://doi.org/10.1039/C6TA09406F

    Article  CAS  Google Scholar 

  10. Berger AH, Bhown AS (2011) Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia 4:562–567. https://doi.org/10.1016/J.EGYPRO.2011.01.089

    Article  CAS  Google Scholar 

  11. Bhatt PM et al (2016) A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J Am Chem Soc 138(29):9301–9307. https://doi.org/10.1021/JACS.6B05345

    Article  CAS  PubMed  Google Scholar 

  12. Bhattacharjee S, Chen C, Ahn W-S (2014) Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv 4(94):52500–52525. https://doi.org/10.1039/C4RA11259H

    Article  CAS  Google Scholar 

  13. Bohrman JA, Carreon MA (2012) Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. Chem Commun 48(42):5130–5132. https://doi.org/10.1039/C2CC31821K

    Article  CAS  Google Scholar 

  14. Breeze P (2015) Carbon capture and storage. Coal-Fired Gener, pp 73–86. https://doi.org/10.1016/B978-0-12-804006-5.00013-7

  15. Burd SD et al (2012) Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4′-bipyridine; bpy-2 = 1,2-bis(4-pyridyl)ethene). J Am Chem Soc 134(8):3663–3666. https://doi.org/10.1021/JA211340T

  16. Cabello CP et al (2014) Enhanced CO2 adsorption capacity of amine-functionalized MIL-100(Cr) metal–organic frameworks. CrystEngComm 17(2):430–437. https://doi.org/10.1039/C4CE01265H

    Article  CAS  Google Scholar 

  17. Carpenter SM Long HA (2017) 13 Integration of carbon capture in IGCC systems. Integr Gasification Combined Cycle (IGCC) Technol, pp 445–463. https://doi.org/10.1016/B978-0-08-100167-7.00036-6

  18. Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130(33):10870–10871. https://doi.org/10.1021/JA8036096

  19. Cavenati S, Grande CA, Rodrigues* AE (2006) Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy Fuels 20(6):2648–2659. https://doi.org/10.1021/EF060119E

  20. Chen D et al (2016) Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. J Mater Chem A 4(7):2657–2662. https://doi.org/10.1039/C6TA00429F

    Article  CAS  Google Scholar 

  21. Chen S, Jin L, Chen X (2011) The effect and prediction of temperature on adsorption capability of coal/CH4. Procedia Eng 26:126–131. https://doi.org/10.1016/J.PROENG.2011.11.2149

    Article  CAS  Google Scholar 

  22. Chen W, Zhang Z, Hou L, Yang C, Shen H, Yang K, Wang Z (2020) Metal-organic framework MOF-801/PIM-1mixed-matrix membranes for enhanced CO2/N2 separation performance. Sep Purif Technol 250:117198

    Google Scholar 

  23. Chen KJ et al (2016) Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2. Angew Chem (International ed. in English), 55(35):10268–10272. https://doi.org/10.1002/ANIE.201603934

  24. Chizallet C et al (2010) Catalysis of transesterification by a nonfunctionalized metal−organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab Initio calculations. J Am Chem Soc 132(35):12365–12377. https://doi.org/10.1021/JA103365S

    Article  CAS  PubMed  Google Scholar 

  25. Choi KM et al (2016) Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J Am Chem Soc 139(1):356–362. https://doi.org/10.1021/JACS.6B11027

    Article  PubMed  Google Scholar 

  26. Chung YG et al (2016) In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm Sci Adv 2(10). https://doi.org/10.1126/SCIADV.1600909

  27. Dallbauman LA., Finn JE (1999) Adsorption and its applications in industry and environmental protection. In: Dabrowski A (ed) Applications in environmental protections, Part B, vol. 120. Elsevier, pp 455–471

    Google Scholar 

  28. Decortes A, Castilla AM, Kleij AW (2010) Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew Chem Int Ed 49(51):9822–9837. https://doi.org/10.1002/ANIE.201002087

    Article  CAS  Google Scholar 

  29. Ding N et al (2016) Partitioning MOF-5 into confined and hydrophobic compartments for carbon capture under humid conditions. J Am Chem Soc 138(32):10100–10103. https://doi.org/10.1021/JACS.6B06051

    Article  CAS  PubMed  Google Scholar 

  30. Ding M et al (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48(10):2783–2828. https://doi.org/10.1039/C8CS00829A

    Article  CAS  PubMed  Google Scholar 

  31. Dybtsev DN † et al (2003) Microporous manganese formate: a simple metal−organic porous material with high framework stability and highly selective gas sorption properties. J Am Chem Soc 126(1):32–33. https://doi.org/10.1021/JA038678C

  32. Eddaoudi M, Li H, Yaghi OM (2000) Highly porous and stable metal-organic frameworks: structure design and sorption properties. https://doi.org/10.1021/ja9933386

  33. Elhenawy SEM et al (2020) Metal-organic frameworks as a platform for CO2 capture and chemical processes: adsorption, membrane separation, catalytic-conversion, and electrochemical reduction of CO2. Catalysts 2020 10(11):1293. https://doi.org/10.3390/CATAL10111293

  34. Favre E (2011) Membrane processes and postcombustion carbon dioxide capture: challenges and prospects. Chem Eng J 171(3):782–793. https://doi.org/10.1016/J.CEJ.2011.01.010

    Article  CAS  Google Scholar 

  35. Fei H et al (2015) Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg Chem 54(14):6821–6828. https://doi.org/10.1021/ACS.INORGCHEM.5B00752

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira AFP et al (2015) Methane purification by adsorptive processes on MIL-53(Al). Chem Eng Sci 124:79–95. https://doi.org/10.1016/J.CES.2014.06.014

    Article  CAS  Google Scholar 

  37. Figueroa JD et al (2008) Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenhouse Gas Control 2(1):9–20. https://doi.org/10.1016/S1750-5836(07)00094-1

    Article  CAS  Google Scholar 

  38. Férey G et al (2011) Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40(2):550–562. https://doi.org/10.1039/C0CS00040J

    Article  PubMed  Google Scholar 

  39. Gadipelli S et al (2014) A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ Sci 7(7):2232–2238. https://doi.org/10.1039/C4EE01009D

    Article  CAS  Google Scholar 

  40. Gough C et al (no date) Biomass energy with carbon capture and storage (BECCS): unlocking negative emissions

    Google Scholar 

  41. Guo Z et al (2016) Hydroxyl-exchanged nanoporous ionic copolymer toward low-temperature cycloaddition of atmospheric carbon dioxide into carbonates. ACS Appl Mater Interfaces 8(20):12812–12821. https://doi.org/10.1021/ACSAMI.6B02461

    Article  CAS  PubMed  Google Scholar 

  42. Günther C, Weng M, Kather A (2013) Restrictions and limitations for the design of a steam generator for a coal-fired oxyfuel power plant with circulating fluidised bed combustion. Energy Procedia 37:1312–1321. https://doi.org/10.1016/J.EGYPRO.2013.06.006

    Article  Google Scholar 

  43. Hamon L et al (2009) Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal−organic frameworks at room temperature. J Am Chem Soc 131(25):8775–8777. https://doi.org/10.1021/JA901587T

    Article  CAS  PubMed  Google Scholar 

  44. Hamon L et al (2011) Molecular insight into the adsorption of H2S in the flexible MIL-53(Cr) and rigid MIL-47(V) MOFs: infrared spectroscopy combined to molecular simulations. J Phys Chem C 115(5):2047–2056. https://doi.org/10.1021/JP1092724

    Article  CAS  Google Scholar 

  45. Hayashi H et al (2007) Zeolite A imidazolate frameworks. Nat Mater 6(7):501–506. https://doi.org/10.1038/nmat1927

  46. He H et al (2016) Metal-organic frameworks for co2 chemical transformations. Small 12(46):6309–6324. https://doi.org/10.1002/SMLL.201602711

    Article  CAS  PubMed  Google Scholar 

  47. Hedin N et al (2013) Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl Energy 104:418–433. https://doi.org/10.1016/J.APENERGY.2012.11.034

    Article  CAS  Google Scholar 

  48. Herm ZR et al (2011) Metal−organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133(15):5664–5667. https://doi.org/10.1021/JA111411Q

    Article  CAS  PubMed  Google Scholar 

  49. Hermes S et al (2005) Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J Am Chem Soc 127(40):13744–13745. https://doi.org/10.1021/JA053523L

  50. Hod I et al (2015) Fe-Porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal 5(11):6302–6309. https://doi.org/10.1021/ACSCATAL.5B01767

    Article  CAS  Google Scholar 

  51. Hu Y et al (2014) Alkylamine-tethered stable metal-organic framework for CO2 capture from flue gas. Chemsuschem 7(3):734–737. https://doi.org/10.1002/CSSC.201301163

    Article  CAS  PubMed  Google Scholar 

  52. Hu Z et al (2015) Ionized Zr-MOFs for highly efficient post-combustion CO2 capture. Chem Eng Sci 124:61–69. https://doi.org/10.1016/J.CES.2014.09.032

    Article  CAS  Google Scholar 

  53. Hu Z et al (2019) CO2 Capture in metal-organic framework adsorbents: an engineering perspective. Adv Sustain Syst 3(1):1800080. https://doi.org/10.1002/ADSU.201800080

    Article  Google Scholar 

  54. Hudson MR et al (2012) Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc 134(4):1970–1973. https://doi.org/10.1021/JA210580B

    Article  CAS  PubMed  Google Scholar 

  55. Jansen D et al (2015) Pre-combustion CO2 capture. Int J Greenhouse Gas Control 40:167–187. https://doi.org/10.1016/J.IJGGC.2015.05.028

    Article  CAS  Google Scholar 

  56. Ji G et al (2016) Hierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO2 capture and conversion. Angew Chem Int Ed 55(33):9685–9689. https://doi.org/10.1002/ANIE.201602667

    Article  CAS  Google Scholar 

  57. Kang Z, Fan L, Sun D (2017) Recent advances and challenges of metal–organic framework membranes for gas separation. J Mater Chem A 5(21):10073–10091. https://doi.org/10.1039/C7TA01142C

    Article  CAS  Google Scholar 

  58. Kayal S, Sun B, Chakraborty A (2015) Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy 91:772–781. https://doi.org/10.1016/J.ENERGY.2015.08.096

    Article  CAS  Google Scholar 

  59. Khaletskaya K et al (2015) Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal-organic framework NH2-MIL-125(Ti) loaded with gold nanoparticles. Chem Mater 27(21):7248–7257. https://doi.org/10.1021/ACS.CHEMMATER.5B03017

    Article  CAS  Google Scholar 

  60. Kitao T et al (2017) Hybridization of MOFs and polymers. Chem Soc Rev 46(11):3108–3133. https://doi.org/10.1039/C7CS00041C

    Article  CAS  PubMed  Google Scholar 

  61. Kitaura R et al (2003) Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew Chem Int Ed 42(4):428–431. https://doi.org/10.1002/ANIE.200390130

    Article  CAS  Google Scholar 

  62. Kornienko N et al (2015) Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137(44):14129–14135. https://doi.org/10.1021/JACS.5B08212

    Article  CAS  PubMed  Google Scholar 

  63. Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175(2):181–196. https://doi.org/10.1016/S0376-7388(00)00418-X

    Article  CAS  Google Scholar 

  64. Kumaravel V, Bartlett J, Pillai SC (2020) Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett, pp 486–519. https://doi.org/10.1021/ACSENERGYLETT.9B02585

  65. Law J et al (2010) In-flight carbon dioxide exposures and related symptoms: association, susceptibility, and operational implications. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.694.8269 Accessed: 7 September 2021

  66. Lee Y et al (2015) Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chem Commun 51(26):5735–5738. https://doi.org/10.1039/C5CC00686D

    Article  CAS  Google Scholar 

  67. Li R et al (2014) Metal–organic frameworks: integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions (Adv Mater 28/2014). Adv Mater 26(28):4907–4907. https://doi.org/10.1002/ADMA.201470193

    Article  Google Scholar 

  68. Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504. https://doi.org/10.1039/B802426J

    Article  CAS  PubMed  Google Scholar 

  69. Li T, Sullivan JE, Rosi NL (2013) Design and preparation of a core-shell metal–organic framework for selective CO2 capture. J Am Chem Soc 135(27):9984–9987. https://doi.org/10.1021/JA403008J

    Article  CAS  PubMed  Google Scholar 

  70. Li H et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759):276–279. https://doi.org/10.1038/46248

  71. Liao P-Q et al (2015) Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ Sci 8(3):1011–1016. https://doi.org/10.1039/C4EE02717E

    Article  CAS  Google Scholar 

  72. Lin Y et al (2013) Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci Rep 3(1):1–7. https://doi.org/10.1038/srep01859

  73. Liu Y et al (2009) Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater 1–3(118):296–301. https://doi.org/10.1016/J.MICROMESO.2008.08.054

    Article  Google Scholar 

  74. Liu J et al (2012) Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem Soc Rev 41(6):2308–2322. https://doi.org/10.1039/C1CS15221A

    Article  CAS  PubMed  Google Scholar 

  75. Liu Y et al (2013) Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS Appl Mater Interfaces 5(15):7654–7658. https://doi.org/10.1021/AM4019675

    Article  CAS  PubMed  Google Scholar 

  76. Liu Y et al (2015) Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angew Chem Int Ed 54(10):3028–3032. https://doi.org/10.1002/ANIE.201411550

    Article  CAS  Google Scholar 

  77. Liu T-T et al (2019) Salen-Co(III) insertion in multivariate cationic metal–organic frameworks for the enhanced cycloaddition reaction of carbon dioxide. Chem Commun 55(28):4063–4066. https://doi.org/10.1039/C8CC10268F

    Article  CAS  Google Scholar 

  78. Looyd PJD (2005) Precombustion technologies to aid carbon capture. Greenhouse Gas Control Technol, pp 1957–1961. https://doi.org/10.1016/B978-008044704-9/50249-4

  79. Lu W et al (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43(16):5561–5593. https://doi.org/10.1039/C4CS00003J

    Article  CAS  PubMed  Google Scholar 

  80. Ma S et al (2007) Metal−organic framework based on a trinickel secondary building unit exhibiting gas-sorption hysteresis. Inorg Chem 46(9):3432–3434. https://doi.org/10.1021/IC070338V

    Article  CAS  PubMed  Google Scholar 

  81. Ma S et al (2009) Microporous lanthanide metal-organic frameworks containing coordinatively linked interpenetration: syntheses, gas adsorption studies, thermal stability analysis, and photoluminescence investigation. Inorg Chem 48(5):2072–2077. https://doi.org/10.1021/IC801948Z

    Article  CAS  PubMed  Google Scholar 

  82. Mahmood A et al (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6(17):1600423. https://doi.org/10.1002/AENM.201600423

    Article  Google Scholar 

  83. Maji TK, Matsuda R, Kitagawa S (2007) A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat Mater 6(2):142–148. https://doi.org/10.1038/nmat1827.

  84. Martínez F, Sanz R, Orcajo G, Briones D, Yángüez V (2016) Amino-impregnated MOF materials for CO2 capture at post-combustion conditions. Chem Eng Sci 142:55–61. https://doi.org/10.1016/J.CES.2015.11.033

  85. Mason JA et al (2011) Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4(8):3030–3040. https://doi.org/10.1039/C1EE01720A

    Article  CAS  Google Scholar 

  86. Masoomi MY et al (2014) Selective CO2 capture in metal-organic frameworks with azine-functionalized pores generated by mechanosynthesis. Cryst Growth Des 14(5):2092–2096. https://doi.org/10.1021/CG500033B

    Article  CAS  Google Scholar 

  87. Maurya M, Singh JK (2019) Effect of ionic liquid impregnation in highly water-stable metal-organic frameworks, covalent organic frameworks, and carbon-based adsorbents for post-combustion flue gas treatment. Energy Fuels 33(4):3421–3428. https://doi.org/10.1021/ACS.ENERGYFUELS.9B00179

    Article  CAS  Google Scholar 

  88. Millward AR, Yaghi* OM (2005) Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127(51):17998–17999. https://doi.org/10.1021/JA0570032

  89. Mukherjee S, Kumar A, Zaworotko MJ (2019) Metal-organic framework based carbon capture and purification technologies for clean environment. Metal-Organic Frameworks (MOFs) Environ Appl, pp 5–61. https://doi.org/10.1016/B978-0-12-814633-0.00003-X

  90. Nandi S et al (2015) A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification. Sci Adv 1(11). https://doi.org/10.1126/SCIADV.1500421

  91. Nguyen NTT et al (2016) Mixed-metal zeolitic imidazolate frameworks and their selective capture of wet carbon dioxide over methane. Inorg Chem 55(12):6201–6207. https://doi.org/10.1021/ACS.INORGCHEM.6B00814

    Article  CAS  PubMed  Google Scholar 

  92. Nugent P et al (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495(7439):80–84. https://doi.org/10.1038/NATURE11893

  93. Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35(6):2610–2628. https://doi.org/10.1016/J.ENERGY.2010.02.030

    Article  CAS  Google Scholar 

  94. Pai KN, Baboolal, JD, Sharp DA, Rajendran A (2019) Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption. Sep Purif Technol 211:540–550. https://doi.org/10.1016/J.SEPPUR.2018.10.015

  95. Park J et al (2012) A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chem Commun 48(80):9995–9997. https://doi.org/10.1039/C2CC34622B

    Article  CAS  Google Scholar 

  96. Park J, Suh BL, Kim J (2020) Computational design of a photoresponsive metal-organic framework for post combustion carbon capture. J Phys Chem C 124(24):13162–13167. https://doi.org/10.1021/ACS.JPCC.0C01878

    Article  CAS  Google Scholar 

  97. Parkes MV et al (2013) Screening metal–organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. Phys Chem Chem Phys 15(23):9093–9106. https://doi.org/10.1039/C3CP50774B

    Article  CAS  PubMed  Google Scholar 

  98. Pescarmona PP, Taherimehr M (2012) Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2. Catal Sci Technol 2(11):2169–2187. https://doi.org/10.1039/C2CY20365K

    Article  CAS  Google Scholar 

  99. Qasem NAA, Ben-Mansour R, Habib MA (2018) An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Appl Energy 210:317–326. https://doi.org/10.1016/J.APENERGY.2017.11.011

    Article  CAS  Google Scholar 

  100. Qian D et al (2012) Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability. ACS Appl Mater Interfaces 4(11):6125–6132. https://doi.org/10.1021/AM301772K

    Article  CAS  PubMed  Google Scholar 

  101. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62(2):165–185. https://doi.org/10.1016/0376-7388(91)80060-J

    Article  CAS  Google Scholar 

  102. Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400. https://doi.org/10.1016/J.MEMSCI.2008.04.030

    Article  CAS  Google Scholar 

  103. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654. https://doi.org/10.1126/SCIENCE.1176731

    Article  CAS  PubMed  Google Scholar 

  104. Rui Z et al (2016) Metal-organic framework membrane process for high purity CO2 production. AIChE J 62(11):3836–3841. https://doi.org/10.1002/AIC.15367

    Article  CAS  Google Scholar 

  105. Samanta A et al (2011) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51(4):1438–1463. https://doi.org/10.1021/IE200686Q

    Article  Google Scholar 

  106. Sandrine Bourrelly, † et al (2005) Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J Am Chem Soc 127(39):13519–13521. https://doi.org/10.1021/JA054668V

  107. Sanz-Pérez ES et al (2016) Direct capture of CO2 from ambient air. Chem Rev 116(19):11840–11876. https://doi.org/10.1021/ACS.CHEMREV.6B00173

    Article  PubMed  Google Scholar 

  108. Senthil Kumar R, Senthil Kumar S, Kulandainathan MA (2012) Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem Commun 25:70–73. https://doi.org/10.1016/j.elecom.2012.09.018

    Article  CAS  Google Scholar 

  109. Serra-Crespo P et al (2015) Preliminary design of a vacuum pressure swing adsorption process for natural gas upgrading based on amino-functionalized MIL-53. Chem Eng Technol 38(7):1183–1194. https://doi.org/10.1002/CEAT.201400741

    Article  CAS  Google Scholar 

  110. Songolzadeh M et al (2014) Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. The Sci World J 2014. https://doi.org/10.1155/2014/828131

  111. Stanger R et al (2015) Oxyfuel combustion for CO2 capture in power plants. Int J Greenhouse Gas Control 40:55–125. https://doi.org/10.1016/J.IJGGC.2015.06.010

    Article  CAS  Google Scholar 

  112. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112(2):724–781. https://doi.org/10.1021/CR2003272

  113. Sun D et al (2015) Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chem Commun 51(11):2056–2059. https://doi.org/10.1039/C4CC09407G

    Article  CAS  Google Scholar 

  114. Sun D et al (2013) Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chem—A Eur J 19(42):14279–14285. https://doi.org/10.1002/CHEM.201301728

  115. Tae-Hyun B et al (2010) ‘A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew Chem (International ed. in English), 49(51):9863–9866. https://doi.org/10.1002/ANIE.201006141

  116. Taherimehr M et al (2013) High activity and switchable selectivity in the synthesis of cyclic and polymeric cyclohexene carbonates with iron amino triphenolate catalysts. Green Chem 15(11):3083–3090. https://doi.org/10.1039/C3GC41303A

    Article  CAS  Google Scholar 

  117. Taherimehr M et al (2015) New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates. Chemsuschem 8(6):1034–1042. https://doi.org/10.1002/CSSC.201403323

    Article  CAS  PubMed  Google Scholar 

  118. Tillman DA (2018) The development of postcombustion control technology. Coal-Fired Electricity Emissions Control, pp 237–276. https://doi.org/10.1016/B978-0-12-809245-3.00009-4

  119. Vellingiri K, Deep A, Kim K-H (2016) Metal–organic frameworks as a potential platform for selective treatment of gaseous sulfur compounds. ACS Appl Mater Interfaces 8(44):29835–29857. https://doi.org/10.1021/ACSAMI.6B10482

    Article  CAS  PubMed  Google Scholar 

  120. Venna SR, Carreon MA (2015) Metal organic framework membranes for carbon dioxide separation. Chem Eng Sci 124:3–19. https://doi.org/10.1016/J.CES.2014.10.007

    Article  CAS  Google Scholar 

  121. Wade CR, Dincă M (2012) Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal–organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). Dalton Trans 41(26):7931–7938. https://doi.org/10.1039/C2DT30372H

    Article  CAS  PubMed  Google Scholar 

  122. Wang Q et al (2010) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4(1):42–55. https://doi.org/10.1039/C0EE00064G

    Article  Google Scholar 

  123. Wang C et al (2011) Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133(34):13445–13454. https://doi.org/10.1021/JA203564W

    Article  CAS  PubMed  Google Scholar 

  124. Wang Q et al (2015) Finely tuning MOFs towards high-performance post-combustion CO2 capture materials. Chem Commun 52(3):443–452. https://doi.org/10.1039/C5CC07751F

    Article  CAS  Google Scholar 

  125. Wang C, An B, Lin W (2018) Metal–organic frameworks in solid-gas phase catalysis. ACS Catal 9(1):130–146. https://doi.org/10.1021/ACSCATAL.8B04055

    Article  Google Scholar 

  126. Wang S, Wang X (2015) Multifunctional metal-organic frameworks for photocatalysis. Small 11(26):3097–3112. https://doi.org/10.1002/SMLL.201500084

    Article  CAS  PubMed  Google Scholar 

  127. Wang Y, Zhao L, Otto A, Robinius M, Stolten D (2017) A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia 114:650–665. https://doi.org/10.1016/J.EGYPRO.2017.03.1209

  128. Wang Y et al (2020) Reticular chemistry in electrochemical carbon dioxide reduction. Sci China Mater 63(7):1113–1141. https://doi.org/10.1007/S40843-020-1304-3

  129. Wei W et al (2013) A heterometallic microporous MOF exhibiting high hydrogen uptake. Microporous Mesoporous Mater 165:20–26. https://doi.org/10.1016/J.MICROMESO.2012.07.036

    Article  CAS  Google Scholar 

  130. Xiang Z et al (2011) CNT@Cu3(BTC)2 and metal-organic frameworks for separation of CO2/CH4 mixture. J Phys Chem C 115(40):19864–19871. https://doi.org/10.1021/JP206959K

    Article  CAS  Google Scholar 

  131. Xiao J-D, Jiang H-L (2017) Thermally stable metal-organic framework-templated synthesis of hierarchically porous metal sulfides: enhanced photocatalytic hydrogen production. Small 13(28):1700632. https://doi.org/10.1002/SMLL.201700632

    Article  Google Scholar 

  132. Xiao J-D, Jiang H-L (2018) Metal–organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res. https://doi.org/10.1021/ACS.ACCOUNTS.8B00521

    Article  PubMed  PubMed Central  Google Scholar 

  133. Xie Z et al (2013) Alumina-supported cobalt–adeninate MOF membranes for CO2/CH4 separation. J Mater Chem A 2(5):1239–1241. https://doi.org/10.1039/C3TA14058J

    Article  Google Scholar 

  134. Xiong S et al (2014) A new tetrazolate zeolite-like framework for highly selective CO2/CH4 and CO2/N2 separation. Chem Commun 50(81):12101–12104. https://doi.org/10.1039/C4CC05729E

    Article  CAS  Google Scholar 

  135. Yan Q et al (2013) Designed synthesis of functionalized two-dimensional metal-organic frameworks with preferential CO2 capture. ChemPlusChem 78(1):86–91. https://doi.org/10.1002/CPLU.201200270

    Article  CAS  Google Scholar 

  136. Yao J, Wang H (2014) Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem Soc Rev 43(13):4470–4493. https://doi.org/10.1039/C3CS60480B

    Article  CAS  PubMed  Google Scholar 

  137. Yi F-Y et al (2017) Metal–organic frameworks and their composites: synthesis and electrochemical applications. Small Methods 1(11):1700187. https://doi.org/10.1002/SMTD.201700187

    Article  Google Scholar 

  138. Yin H et al (2014) A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2–N2 separation. Chem Commun 50(28):3699–3701. https://doi.org/10.1039/C4CC00068D

    Article  CAS  Google Scholar 

  139. Yu J et al (2017) CO2 capture and separations using MOFs: computational and experimental studies. Chem Rev 117(14):9674–9754. https://doi.org/10.1021/ACS.CHEMREV.6B00626

    Article  CAS  PubMed  Google Scholar 

  140. Yu J, Balbuena PB (2013) Water effects on postcombustion CO2 capture in Mg-MOF-74. J Phys Chem C 117(7):3383–3388. https://doi.org/10.1021/JP311118X

    Article  CAS  Google Scholar 

  141. Yu C-H, Huang C-H, Tan C-S (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Quality Res 12(5):745–769. https://doi.org/10.4209/AAQR.2012.05.0132

    Article  CAS  Google Scholar 

  142. Zhai Q-G et al (2017) Pore space partition in metal-organic frameworks. Acc Chem Res 50(2):407–417. https://doi.org/10.1021/ACS.ACCOUNTS.6B00526

    Article  CAS  PubMed  Google Scholar 

  143. Zhang Y et al (2013) Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenhouse Gas Control 12:84–107. https://doi.org/10.1016/J.IJGGC.2012.10.009

    Article  CAS  Google Scholar 

  144. Zhang C et al (2014) Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE J 60(7):2625–2635. https://doi.org/10.1002/AIC.14496

    Article  CAS  Google Scholar 

  145. Zhang Z et al (2014) Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ Sci 7(9):2868–2899. https://doi.org/10.1039/C4EE00143E

    Article  CAS  Google Scholar 

  146. Zhang Z et al (2016) Polymer–metal–organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J Am Chem Soc 138(3):920–925. https://doi.org/10.1021/JACS.5B11034

    Article  CAS  PubMed  Google Scholar 

  147. Zhang L, Zhao Z-J, Gong J (2017) Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed 56(38):11326–11353. https://doi.org/10.1002/ANIE.201612214

    Article  CAS  Google Scholar 

  148. Zhao Y, Ding H, Zhong Q (2013) Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture. Appl Surf Sci 284:138–144. https://doi.org/10.1016/J.APSUSC.2013.07.068

    Article  CAS  Google Scholar 

  149. Zhenggong W et al (2016) Interfacial design of mixed matrix membranes for improved gas separation performance. Adv Mater (Deerfield Beach, Fla.) 28(17):3399–3405. https://doi.org/10.1002/ADMA.201504982

  150. Zhong DL et al (2016) Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation. Energy 102:621–629. https://doi.org/10.1016/J.ENERGY.2016.02.135

    Article  CAS  Google Scholar 

  151. Zhou H-C “Joe”, Kitagawa S (2014) Metal–organic frameworks (MOFs). Chem Soc Rev 43(16):5415–5418. https://doi.org/10.1039/C4CS90059F

  152. Zou X, Zhu G (2019) CO2 capture with MOF membranes. Microporous Mater Sep Membr, pp 323–359. https://doi.org/10.1002/9783527343997.CH10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prakash, A., Sharma, R.K. (2022). Metal–Organic Frameworks as Promising Catalysts for CO2 Capture and Fixation. In: Gulati, S. (eds) Metal-Organic Frameworks (MOFs) as Catalysts. Springer, Singapore. https://doi.org/10.1007/978-981-16-7959-9_8

Download citation

Publish with us

Policies and ethics