Skip to main content

Modeling Australian Twin Data Using Generalized Lindley Shared Frailty Models

  • Conference paper
  • First Online:
Applied Statistical Methods (ISGES 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 380))

Abstract

A new class of shared frailty models based on generalized Lindley distribution is established. We propose shared frailty models based on reversed hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov chain Monte Carlo technique. Model selection criteria have been performed for the comparison of models. We analyze Australian twin data and suggest a better model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Block, H. W., Savits, T. H., & Singh, H. (1998). On the reversed hazard rate function. Probability in the Engineering and Informational Sciences, 12, 69–90.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R. (1972). Regression Models and Life Tables (with Discussion). Journal of Royal Statistical Society, Series B, 34, 187–220.

    MathSciNet  MATH  Google Scholar 

  • Duffy, D. L., Martin, N. G., & Mathews, J. D. (1990). Appendectomy in Australian twins. Australian Journal of Human Genetics, 47(3), 590–92.

    Google Scholar 

  • Elbatal, I., Merovei, F., & Elgarhy, M. (2013). A new generalized Lindley distribution. Mathematical Theory and Modeling, 3(13), 30–47.

    Google Scholar 

  • Gelman, A. and Rubin, D. B. (1992). A single series from the Gibbs sampler provides a false sense of security. In Bayesian Statistics 4 (J. M. Bernardo, J. 0.Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: Oxford University Press. pp. 625-632.

    Google Scholar 

  • Geweke, J. (1992). Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments. In J. M. Bernardo, J. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian Statistics 4 (pp. 169–193). Oxford: Oxford University Press.

    Google Scholar 

  • Hanagal, D. D. (2008). Frailty regression models in mixture distributions. Journal of Statistical Planning and Inference, 138(8), 2462–68.

    Article  MathSciNet  Google Scholar 

  • Hanagal, D. D. (2011). Modeling Survival Data Using Frailty Models. New York: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Hanagal, D.D. (2017). Frailty Models in Public Health. Handbook of Statistics, 37(B), 209-247. Elsevier Publishers; Amsterdam.

    Google Scholar 

  • Hanagal, D. D. (2019). Modeling Survival Data Using Frailty Models (2nd ed.). Singapore: Springer.

    Book  Google Scholar 

  • Hanagal, D. D., & Bhambure, S. M. (2014). Analysis of kidney infection data using shared positive stable frailty models. Advances in Reliability, 1, 21–39.

    Google Scholar 

  • Hanagal, D. D., & Bhambure, S. M. (2015). Comparison of shared gamma frailty models using Bayesian approach. Model Assisted Statistics & Applications, 10, 25–41.

    Article  Google Scholar 

  • Hanagal, D. D., & Bhambure, S. M. (2016). Modeling bivariate survival data using shared inverse Gaussian frailty model. Communications in Statistics, Theory & Methods, 45(17), 4969–4987.

    Article  MathSciNet  Google Scholar 

  • Hanagal, D. D., & Bhambure, S. M. (2017). Modeling Australian twin data using shared positive stable frailty models based on reversed hazard rate. Communications in Statistics-Theory and Methods, 46(8), 3754–3771.

    Article  MathSciNet  Google Scholar 

  • Hanagal, D. D., & Dabade, A. D. (2013). Modeling of inverse Gaussian frailty model for bivariate survival data. Communications in Statistics-Theory and Methods, 42(20), 3744–3769.

    Article  MathSciNet  Google Scholar 

  • Hanagal, D. D., & Dabade, A. D. (2015). Comparison of shared frailty models for kidney infection data under exponential power baseline distribution. Communications in Statistics-Theory and Methods, 44(23), 5091–5108.

    Article  MathSciNet  Google Scholar 

  • Hanagal, D. D., & Kamble, A. T. (2015). Bayesian estimation in shared compound poisson frailty models. Journal of Reliability and Statistical Studies, 8(1), 159–180.

    Google Scholar 

  • Hanagal, D. D., & Pandey, A. (2014a). Inverse Gaussian shared frailty for modeling kidney infection data. Advances in Reliability, 1, 1–14.

    Google Scholar 

  • Hanagal, D. D., & Pandey, A. (2014b). Gamma shared frailty model based on reversed hazard rate for bivariate survival data. Statistics& Probability Letters, 88, 190–196.

    Google Scholar 

  • Hanagal, D. D., & Pandey, A. (2015a). Gamma frailty models for bivariate survival data. Journal of Statistical Computation and Simulation, 85(15), 3172–3189.

    Google Scholar 

  • Hanagal, D. D., & Pandey, A. (2015b). Inverse Gaussian shared frailty models with generalized exponential and generalized inverted exponential as baseline distributions. Journal of Data Science, 13(2), 569–602.

    Google Scholar 

  • Hanagal, D. D., & Pandey, A. (2016a). Gamma shared frailty model based on reversed hazard rate. Communications in Statistics-Theory and Methods, 45(7), 2071–2088.

    Google Scholar 

  • Hanagal, D. D., & Pandey, A. (2016b). Inverse Gaussian shared frailty models based on reversed hazard rate. Model Assisted Statistics and Applications, 11, 137–151.

    Google Scholar 

  • Hanagal, D. D., & Pandey, A. (2017a). Shared inverse Gaussian frailty models based on additive hazards. Communications in Statistics-Theory and Methods, 46(22), 11143–11162.

    Google Scholar 

  • Hanagal, D. D., & Pandey, A. (2017b). Shared frailty models based on reversed hazard rate for modified inverse Weibull distribution as baseline distribution. Communications in Statistics-Theory and Methods, 46(1), 234–246.

    Google Scholar 

  • Hanagal, D. D., & Sharma, R. (2013). Modeling heterogeneity for bivariate survival data by shared gamma frailty regression model. Model Assisted Statistics and Applications, 8, 85–102.

    Article  Google Scholar 

  • Hanagal, D. D., & Sharma, R. (2015a). Bayesian inference in Marshall-Olkin bivariate exponential shared gamma frailty regression model under random censoring. Communications in Statistics, Theory and Methods, 44(1), 24–47.

    Google Scholar 

  • Hanagal, D. D., & Sharma, R. (2015b). Comparison of frailty models for acute leukaemia data under Gompertz baseline distribution. Communications in Statistics, Theory& Methods, 44(7), 1338–1350.

    Google Scholar 

  • Hanagal, D. D., & Sharma, R. (2015c). Analysis of bivariate survival data using shared inverse Gaussian frailty model. Communications in Statistics, Theory and Methods, 44(7), 1351–1380.

    Google Scholar 

  • Hougaard, P. (2000). Analysis of Multivariate Survival Data. New York: Springer.

    Book  Google Scholar 

  • Ibrahim, J. G., Ming-Hui, C., & Sinha, D. (2001). Bayesian Survival Analysis. Springer Verlag.

    Google Scholar 

  • Kumar, D., & Singh, A. (2011). General Mathematics Notes, 3(1), 26–31.

    Google Scholar 

  • Lindley, D. V. (1958). Fiducial distributions and Bayes’s theorem. Journal of the Royal Statistical Society, B, 20, 102–107.

    MathSciNet  MATH  Google Scholar 

  • Raqab, M. Z., & Kundu, D. (2006). Burr type X distribution. Journal of Probability and Statistics, 4(2), 179–193.

    MathSciNet  Google Scholar 

  • Sankaran, P. G., & Gleeja, V. L. (2011). On proportional reversed hazards frailty models. Metron, 69(2), 151–173.

    Article  MathSciNet  Google Scholar 

  • Santos, C. A., & Achcar, J. A. (2010). A Bayesian analysis for multivariate survival data in the presence of covariates. Journal of Statistical Theory and Applications, 9, 233–253.

    MathSciNet  Google Scholar 

  • Shaked, M., & Shantikumar, J. G. (1994). Stochastic Orders and Their Applications. New York: Academic Press.

    Google Scholar 

  • Surles, J. G., & Padgett, W. J. (2001). Inference for reliability and stress-strength for a scaled Burr Type X distribution. Lifetime Data Analysis, 7, 187–200.

    Article  MathSciNet  Google Scholar 

  • Vaupel, J. W., Manton, K. G., & Stallaed, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.

    Article  Google Scholar 

  • Wienke, A. (2011). Frailty Models in Survival Analysis. New York: Chapman & Hall/CRC.

    Google Scholar 

Download references

Acknowledgements

We thank both the referees for the valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, A., Hanagal, D.D., Tyagi, S., Gupta, P. (2022). Modeling Australian Twin Data Using Generalized Lindley Shared Frailty Models. In: Hanagal, D.D., Latpate, R.V., Chandra, G. (eds) Applied Statistical Methods. ISGES 2020. Springer Proceedings in Mathematics & Statistics, vol 380. Springer, Singapore. https://doi.org/10.1007/978-981-16-7932-2_10

Download citation

Publish with us

Policies and ethics