Skip to main content

Porous Diamond Electrodes and Application to Electrochemical Capacitors

  • Chapter
  • First Online:
Diamond Electrodes
  • 534 Accesses

Abstract

Fabrication methods of boron-doped diamond (BDD) electrodes with large specific surface areas are reviewed specifically in terms of their application to electrochemical capacitors including an electric double-layer capacitor (EDLC) or supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  2. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195(24):7880–7903. https://doi.org/10.1016/j.jpowsour.2010.06.036

    Article  CAS  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. https://doi.org/10.1039/C1CS15060J

    Article  CAS  PubMed  Google Scholar 

  4. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–2251. https://doi.org/10.1002/adma.201304137

    Article  CAS  PubMed  Google Scholar 

  5. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50. https://doi.org/10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  6. Einaga Y (2010) Diamond electrodes for electrochemical analysis. J Appl Electrochem 40(10):1807–1816. https://doi.org/10.1007/s10800-010-0112-z

    Article  CAS  Google Scholar 

  7. Honda K, Rao TN, Tryk DA, Fujishima A, Watanabe M, Yasui K, Masuda H (2000) Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. J Electrochem Soc 147(2):659–664. https://doi.org/10.1149/1.1393249

    Article  CAS  Google Scholar 

  8. Kondo T, Kodama Y, Ikezoe S, Yajima K, Aikawa T, Yuasa M (2014) Porous boron-doped diamond electrodes fabricated via two-step thermal treatment. Carbon 77:783–789. https://doi.org/10.1016/j.carbon.2014.05.082

    Article  CAS  Google Scholar 

  9. Honda K, Rao TN, Tryk DA, Fujishima A, Watanabe M, Yasui K, Masuda H (2001) Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications. J Electrochem Soc 148(7):A668. https://doi.org/10.1149/1.1373450

    Article  CAS  Google Scholar 

  10. Honda K, Yoshimura M, Uchikado R, Kondo T, Rao TN, Tryk DA, Fujishima A, Watanabe M, Yasui K, Masuda H (2002) Electrochemical characteristics for redox systems at nano-honeycomb diamond. Electrochim Acta 47(27):4373–4385. https://doi.org/10.1016/S0013-4686(02)00511-X

    Article  CAS  Google Scholar 

  11. Honda K, Yoshimura M, Kawakita K, Fujishima A, Sakamoto Y, Yasui K, Nishio N, Masuda H (2004) Electrochemical characterization of carbon nanotube/nanohoneycomb diamond composite electrodes for a hybrid anode of Li-Ion battery and super capacitor. J Electrochem Soc 151(4):A532. https://doi.org/10.1149/1.1649752

    Article  CAS  Google Scholar 

  12. Gao F, Wolfer MT, Nebel CE (2014) Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon 80:833–840. https://doi.org/10.1016/j.carbon.2014.09.007

    Article  CAS  Google Scholar 

  13. Zanin H, May PW, Fermin DJ, Plana D, Vieira SMC, Milne WI, Corat EJ (2014) Porous boron-doped diamond/carbon nanotube electrodes. ACS Appl Mater Interf 6(2):990–995. https://doi.org/10.1021/am4044344

    Article  CAS  Google Scholar 

  14. Gao F, Lewes-Malandrakis G, Wolfer MT, Müller-Sebert W, Gentile P, Aradilla D, Schubert T, Nebel CE (2015) Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam Relat Mater 51:1–6. https://doi.org/10.1016/j.diamond.2014.10.009

    Article  CAS  Google Scholar 

  15. Hébert C, Scorsone E, Mermoux M, Bergonzo P (2015) Porous diamond with high electrochemical performance. Carbon 90:102–109. https://doi.org/10.1016/j.carbon.2015.04.016

    Article  CAS  Google Scholar 

  16. Ruffinatto S, Girard HA, Becher F, Arnault JC, Tromson D, Bergonzo P (2015) Diamond porous membranes: a material toward analytical chemistry. Diam Relat Mater 55:123–130. https://doi.org/10.1016/j.diamond.2015.03.008

    Article  CAS  Google Scholar 

  17. Sawczak M, Sobaszek M, Siuzdak K, Ryl J, Bogdanowicz R, Darowicki K, Gazda M, Cenian A (2015) Formation of highly conductive boron-doped diamond on TiO2 nanotubes composite for supercapacitor or energy storage devices. J Electrochem Soc 162(10):A2085–A2092. https://doi.org/10.1149/2.0551510jes

    Article  CAS  Google Scholar 

  18. Aradilla D, Gao F, Lewes-Malandrakis G, Müller-Sebert W, Gentile P, Boniface M, Aldakov D, Iliev B, Schubert TJS, Nebel CE, Bidan G (2016) Designing 3D multihierarchical heteronanostructures for high-performance on-chip hybrid supercapacitors: Poly(3,4-(ethylenedioxy)thiophene)-coated diamond/silicon nanowire electrodes in an aprotic ionic liquid. ACS Appl Mater Interfaces 8(28):18069–18077. https://doi.org/10.1021/acsami.6b04816

    Article  CAS  PubMed  Google Scholar 

  19. Gao F, Nebel CE (2016) Diamond-based supercapacitors: realization and properties. ACS Appl Mater Interf 8(42):28244–28254. https://doi.org/10.1021/acsami.5b07027

    Article  CAS  Google Scholar 

  20. Scorsone E, Gattout N, Rousseau L, Lissorgues G (2017) Porous diamond pouch cell supercapacitors. Diam Relat Mater 76:31–37. https://doi.org/10.1016/j.diamond.2017.04.004

    Article  CAS  Google Scholar 

  21. Aradilla D, Gao F, Lewes-Malandrakis G, Müller-Sebert W, Gentile P, Pouget S, Nebel CE, Bidan G (2017) Powering electrodes for high performance aqueous micro-supercapacitors: diamond-coated silicon nanowires operating at a wide cell voltage of 3V. Electrochim Acta 242:173–179. https://doi.org/10.1016/j.electacta.2017.04.102

    Article  CAS  Google Scholar 

  22. Kondo T, Lee S, Honda K, Kawai T (2009) Conductive diamond hollow fiber membranes. Electrochem Commun 11(8):1688–1691. https://doi.org/10.1016/j.elecom.2009.06.027

    Article  CAS  Google Scholar 

  23. Kondo T, Kodama Y, Yuasa M (2012) Fabrication and electrochemical properties of boron-doped diamond hollow fiber wool. Trans Mater Res Soc Jpn 37(4):503–506. https://doi.org/10.14723/tmrsj.37.503

    Article  CAS  Google Scholar 

  24. Yang N, Uetsuka H, Osawa E, Nebel CE (2008) Vertically aligned diamond nanowires for DNA sensing. Angew Chem Int Ed 47(28):5183–5185. https://doi.org/10.1002/anie.200801706

    Article  CAS  Google Scholar 

  25. Terashima C, Arihara K, Okazaki S, Shichi T, Tryk DA, Shirafuji T, Saito N, Takai O, Fujishima A (2011) Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching. ACS Appl Mater Interfaces 3(2):177–182. https://doi.org/10.1021/am1007722

    Article  CAS  PubMed  Google Scholar 

  26. Ohashi T, Zhang J, Takasu Y, Sugimoto W (2011) Steam activation of boron doped diamond electrodes. Electrochim Acta 56(16):5599–5604. https://doi.org/10.1016/j.electacta.2011.04.005

    Article  CAS  Google Scholar 

  27. Ohashi T, Sugimoto W, Takasu Y (2009) Catalytic roughening of surface layers of BDD for various applications. Electrochim Acta 54(22):5223–5229. https://doi.org/10.1016/j.electacta.2009.04.021

    Article  CAS  Google Scholar 

  28. Shi C, Li C, Li M, Li H, Dai W, Wu Y, Yang B (2016) Fabrication of porous boron-doped diamond electrodes by catalytic etching under hydrogen–argon plasma. Appl Surf Sci 360:315–322. https://doi.org/10.1016/j.apsusc.2015.11.028

    Article  CAS  Google Scholar 

  29. Pandey KC (1982) New dimerized-chain model for the reconstruction of the diamond (111)-(2 × 1) surface. Phys Rev B 25(6):4338–4341

    Article  CAS  Google Scholar 

  30. Petukhov AV, Passerone D, Ercolessi F, Tosatti E, Fasolino A (2000) (Meta)stable reconstructions of the diamond (111) surface: Interplay between diamond and graphitelike bonding. Phys Rev B 61(16):R10590–R10593

    Article  CAS  Google Scholar 

  31. Kondo T, Yajima K, Kato T, Okano M, Terashima C, Aikawa T, Hayase M, Yuasa M (2017) Hierarchically nanostructured boron-doped diamond electrode surface. Diam Relat Mater 72:13–19. https://doi.org/10.1016/j.diamond.2016.12.004

    Article  CAS  Google Scholar 

  32. Fischer AE, Swain GM (2005) Preparation and characterization of boron-doped diamond powder. J Electrochem Soc 152(9):B369. https://doi.org/10.1149/1.1984367

    Article  CAS  Google Scholar 

  33. Ay A, Swope VM, Swain GM (2008) The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond. J Electrochem Soc 155(10):B1013. https://doi.org/10.1149/1.2958308

    Article  CAS  Google Scholar 

  34. Kondo T, Kato T, Miyashita K, Aikawa T, Tojo T, Yuasa M (2019) Boron-doped diamond powders for aqueous supercapacitors with high energy and high power density. J Electrochem Soc 166(8):A1425–A1431. https://doi.org/10.1149/2.0381908jes

  35. Kondo T, Nakajima K, Osasa T, Kotsugai A, Shitanda I, Hoshi Y, Itagaki M, Aikawa T, Tojo T, Yuasa M (2018) Effect of substrate size on the electrochemical properties of boron-doped diamond powders for screen-printed diamond electrode. Chem Lett 47(12):1464–1467. https://doi.org/10.1246/cl.180672

    Article  CAS  Google Scholar 

  36. Miyashita K, Kondo T, Sugai S, Tei T, Nishikawa M, Tojo T, Yuasa M (2019) Boron-doped nanodiamond as an electrode material for aqueous electric double-layer capacitors. Sci Rep 9(1):17846. https://doi.org/10.1038/s41598-019-54197-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author appreciates the support of this work by KAKENHI (Nos. 26410246 and 19K05064) grants from the Japan Society for the Promotion of Sciences (JSPS) , by Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency (JST), by Tokyo Ohka Foundation for the Promotion of Science and Technology, and by the Joint Usage/Research Program of the Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kondo, T. (2022). Porous Diamond Electrodes and Application to Electrochemical Capacitors. In: Einaga, Y. (eds) Diamond Electrodes. Springer, Singapore. https://doi.org/10.1007/978-981-16-7834-9_6

Download citation

Publish with us

Policies and ethics