Skip to main content

Electrochemical Properties of BDD Electrodes by Surface Control

  • Chapter
  • First Online:
Diamond Electrodes

Abstract

Boron-doped diamond (BDD) has attracted much attention as a promising electrode material, because it has excellent electrochemical properties such as a wide potential window and low background current. It is known that the electrochemical properties of BDD electrodes are very sensitive to the surface termination such as to whether it is hydrogen- or oxygen-terminated. Especially for electrochemical sensor application, pretreating BDD electrodes by cathodic reduction (CR) to hydrogenate the surface has been widely used to achieve high sensitivity. However, little is known about the effects of the CR treatment conditions on surface hydrogenation. In this chapter, at first, a systematic study of CR treatments in order that we can achieve effective surface hydrogenation is discussed. Also, direct observation of surface hydroxylation by anodic oxidation was reported. We have developed in situ spectroscopic measurement systems on BDD electrodes, i.e., in situ attenuated total reflection infrared spectroscopy (ATR-IR) and electrochemical X-ray photoelectron spectroscopy (EC-XPS). Furthermore, surface modification by functional molecules to introduce specific functions is also discussed. As examples, photochemical modification method via UV irradiation and electrochemical modification method are introduced. These surface control and modification should be important not only for better understanding of BDD’s fundamentals but also for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Einaga Y, Rao TN, Tryk DA (2005) Diamond Electrochemistry; Elsevier

    Google Scholar 

  2. Einaga Y (1807) Diamond electrodes for electrochemical analysis. J Appl Electrochem 2010:40

    Google Scholar 

  3. Einaga Y, Foord JS, Swain GM (2014) Diamond electrodes: diversity and maturity. MRS Bull 39:525

    Article  CAS  Google Scholar 

  4. Macpherson JV (2015) A practical guide to using boron doped diamond in electrochemical research. Phys Chem Chem Phys 17:2935

    Article  CAS  Google Scholar 

  5. Einaga Y (2018) Development of the electrochemical applications of boron-doped diamond electrodes. Bull Chem Soc Jpn 91:1752–1762

    Article  CAS  Google Scholar 

  6. Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X (2018) Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 48:157−204

    Google Scholar 

  7. Muzyka K, Sun J, Fereja TH, Lan Y, Zhang W, Xu G (2019) Boron-doped diamnd: current progress and challenges in view of electroanalytical applications. Anal Methods 11:397–414

    Article  CAS  Google Scholar 

  8. Ogata G, Ishii Y, Asai K, Sano Y, Nin F, Yoshida T, Higuchi T, Sawamura S, Ota T, Hori K, Maeda K, Komune S, Doi K, Takai M, Findlay I, Kusuhara H, Einaga Y, Hibino H (2017) A microsensing system for the in vivo real-time detection of local drug kinetics. Nat Biomed Eng 1:654

    Article  CAS  Google Scholar 

  9. Asai K, Ivandini TA, Einaga Y (2016) Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Sci Rep 6:32429

    Article  CAS  Google Scholar 

  10. Matsubara T, Ujie M, Yamamoto T, Akahori M, Einaga Y, Sato T (2016) Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide. Proc Natl Acad Sci USA 113:8981

    Article  CAS  Google Scholar 

  11. Murata M, Ivandini TA, Shibata M, Nomura S, Fujishima A, Einaga Y (2008) Electrochemical detection of free chlorine at highly boron-doped diamond electrodes. J Electro-anal Chem 612:29

    Article  CAS  Google Scholar 

  12. Suzuki A, Ivandini TA, Yoshimi K, Fujishima A, Oyama G, Nakazato T, Hattori N, Kitazawa S, Einaga Y (2007) Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal Chem 79:8608

    Article  CAS  Google Scholar 

  13. Watanabe T, Honda Y, Kanda K, Einaga Y (2014) Tailored design of boron-doped diamond electrodes for various electrochemical applications with boron-doping level and sp2-bonded carbon impuritiesPhys. Status Solidi A 211:2709

    Article  CAS  Google Scholar 

  14. Szunerits S, Boukherroub R (2008) Different strategies for functionalization of diamond surfaces. J Solid State Electrochem 12:1205–1218

    Google Scholar 

  15. Ivandini TA, Rao TN, Fujishima A, Einaga Y (2006) Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal Chem 78:3467–3471

    Article  CAS  Google Scholar 

  16. Kondo T, Niwano Y, Tamura A, Ivandini TA, Einaga Y, Tryk DA, Fujishima A, Kawai T (2008) Sensitive electrochemical detection of oxalate at a positively charged boron-doped diamond surface. Electroanalysis 20:1556–1564

    Article  CAS  Google Scholar 

  17. Kondo T, Tamura A, Kawai T (2009) Cobalt phthalocyanine-modified boron-doped diamond electrode for highly sensitive detection of hydrogen peroxide. J Electrochem Soc 156:F145–F150

    Article  CAS  Google Scholar 

  18. Zhou Y, Zhi JF (2006) Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode. Electrochem Commun 8:1811–1816

    Article  CAS  Google Scholar 

  19. Yagi I, Notsu H, Kondo T, Tryk DA, Fujishima A (1999) Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. J Electroanal Chem 473:173–178

    Article  CAS  Google Scholar 

  20. Ferro S, Colle MD, Battisti AD (2005) Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes. Carbon 43:1191–1203

    Article  CAS  Google Scholar 

  21. Sakai T, Song KS, Kanazawa H, Nakamura Y, Umezawa H, Tachiki M, Kawarada H (2003) Ozone-treated channel diamond field-effect transistors. Diamond Relat Mater 12:1971–1975

    Article  CAS  Google Scholar 

  22. Liu FB, Wang JD, Liu B, Li XM, Chen DR (2007) Effect of electronic structures on electrochemical behaviors of surface-terminated boron-doped diamond film electrodes. Diamond Relat Mater 16:454–460

    Google Scholar 

  23. Denisenko A, Pietzka C, Romanyuk A, El-Hajj H, Kohn E (2008) The electronic surface barrier of boron-doped diamond by anodic oxidation. J Appl Phys 103:014904

    Google Scholar 

  24. Hutton LA, Iacobini JG, Bitziou E, Channon RB, Newton ME, Macpherson JV (2013) Examination of the factors affecting the electrochemical performance of oxygen-terminated polycrystalline boron-doped diamond electrodes. Anal Chem 85:7230–7240

    Article  CAS  Google Scholar 

  25. Ando T, Ishii M, Kamo M, Sato Y (1993) Thermal hydrogenation of diamond surfaces studied by diffuse reflectance Fourier-transform infrared, temperature-programmed desorption and laser Raman spectroscopy. J Chem Soc Faraday Trans 89:1783–1789

    Google Scholar 

  26. Hoffmann R, Kriele A, Obloh H, Hees J, Wolfer M, Smirnov W, Yang N, Nabel CE (2010) Electrochemical hydrogen termination of boron-doped diamond. Appl Phys Lett 97:052103

    Google Scholar 

  27. Salazar-Banda GR, Andrade LS, Nascente PAP, Pizani PS, Rocha-Filho RC, Avaca LA (2006) On the changing electrochemical behaviour of boron-doped diamond surfaces with time after cathodic pre-treatments. Electrochim Acta 51:4612–4619

    Article  CAS  Google Scholar 

  28. Kasahara S, Natsui K, Watanabe T, Yokota Y, Kim Y, Iizuka S, Tateyama Y, Einaga Y (2017) Surface hydrogenation of boron-doped diamond electrodes by cathodic reduction. Anal Chem, 11341–11347

    Google Scholar 

  29. Kasahara S, Ogose T, Ikemiya N, Yamamoto T, Natsui K, Yokota Y, Wong R, Iizuka S, Hoshi N, Tateyama Y, Kim Y, Nakamura M, Einaga Y (2019) In-Situ spectroscopic study on the surface hydroxylation of diamond electrodes. Anal Chem 91:4980–4986

    Google Scholar 

  30. Leroux YR, Fei H, Noel J-M, Roux C, Hapiot P (2010) Efficient covalent modification of a carbon surface: use of a Silyl protecting group to form an active monolayer. J Am Chem Soc 132:14039–14041

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Einaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Einaga, Y., Kasahara, S., Natsui, K. (2022). Electrochemical Properties of BDD Electrodes by Surface Control. In: Einaga, Y. (eds) Diamond Electrodes. Springer, Singapore. https://doi.org/10.1007/978-981-16-7834-9_2

Download citation

Publish with us

Policies and ethics