Skip to main content

Crystallization and Polymorphism of Amino Acids Controlled by High-Repetition-Rate Femtosecond Laser Pulses

  • Chapter
  • First Online:
High-Energy Chemistry and Processing in Liquids
  • 490 Accesses

Abstract

This chapter first reviews the history of laser-induced crystallization and polymorphism control and then presents the experimental results on crystallization and polymorphism obtained by high-repetition-rate femtosecond laser irradiation, which is based on various physical phenomena (optical trapping and laser ablation). Femtosecond laser pulses are focused on clusters of amino acid solutions (L-phenylalanine (L-Phe) and L-serine (L-Ser)) in solution. These clusters are gathered at a high local concentration in the focal volume, eventually leading to crystal nucleation. This phenomenon is called optical trapping-induced crystallization (OTIC). OTIC yields crystals with different molecular arrangements (polymorphs) depending on the laser irradiation conditions. Among the reported polymorphs are monohydrate and anhydrous crystals of both L-Phe and L-Ser, which exhibit similar thermal behaviors. However, unlike L-Ser, L-Phe has a benzene moiety in its chemical structure, so its crystallization and polymorphism phenomena are governed by multiphoton absorption under femtosecond laser irradiation and essentially differ from those of L-Ser. Herein, the mechanism of polymorph control is uniformly discussed in terms of classical nucleation theory. Polymorphs are controlled by the degree of local concentration achieved by laser irradiation. All phenomena and experimental results presented in this chapter are characteristic of high-energy lasers and provide many insights into the emerging field of high-energy chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.A. Garetz, J.E. Aber, N.L. Goddard, R.G. Young, A.S. Myerson, Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions. Phys. Rev. Lett. 77, 3475 (1996). https://doi.org/10.1103/PhysRevLett.77.3475

    Article  CAS  PubMed  Google Scholar 

  2. S. Veesler, K. Furuta, H. Horiuchi, H. Hiratsuka, N. Ferté, T. Okutsu, Crystals from light: photochemically induced nucleation of hen egg-white lysozyme. Cryst. Growth Des. 6, 1631–1635 (2006). https://doi.org/10.1021/cg0506424

    Article  CAS  Google Scholar 

  3. T. Okutsu, Photochemically-induced crystallization of protein. J. Photochem. Photobiol. C: Photochem. Rev. 8, 143–155 (2007). https://doi.org/10.1016/j.jphotochemrev.2007.06.002

    Article  CAS  Google Scholar 

  4. A.J. Alexander, P.J. Camp, Single pulse, single crystal laser-induced nucleation of potassium chloride. Cryst. Growth Des. 9, 958–963 (2009). https://doi.org/10.1021/cg8007415

    Article  CAS  Google Scholar 

  5. A. Ikni, B. Clair, P. Scouflaire, S. Veesler, J.M. Gillet, N. El Hassan, F. Dumas, A. Spasojević-de Biré, Experimental demonstration of the carbamazepine crystallization from non-photochemical laser-induced nucleation in acetonitrile and methanol. Cryst. Growth Des. 14 3286–3299 (2014). https://doi.org/10.1021/cg500163c

  6. H.Y. Yoshikawa, R. Murai, H. Adachi, S. Sugiyama, M. Maruyama, Y. Takahashi, K. Takano, H. Matsumura, T. Inoue, S. Murakami, H. Masuhara, Y. Mori, Laser ablation for protein crystal nucleation and seeding. Chem. Soc. Rev. 43, 2147–2158 (2014). https://doi.org/10.1039/C3CS60226E

    Article  CAS  PubMed  Google Scholar 

  7. T. Sugiyama, T. Adachi, H. Masuhara, Crystallization of glycine by photon pressure of a focused cw laser beam. Chem. Lett. 36, 1480–1481 (2007). https://doi.org/10.1246/cl.2007.1480

    Article  CAS  Google Scholar 

  8. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986). https://doi.org/10.1364/OL.11.000288

    Article  CAS  PubMed  Google Scholar 

  9. T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara, Crystallization in unsaturated glycine/D2O solution achieved by irradiating a focused continuous wave near infrared laser. Cryst. Growth Des. 10, 4686–4688 (2010). https://doi.org/10.1021/cg100830x

    Article  CAS  Google Scholar 

  10. C.S. Wu, P.Y. Hsieh, K. Yuyama, H. Masuhara, T. Sugiyama, Pseudopolymorph control of l-phenylalanine achieved by laser trapping. Cryst. Growth Des. 18, 5417–5425 (2018). https://doi.org/10.1021/acs.cgd.8b00796

    Article  CAS  Google Scholar 

  11. G.R. Desiraju, Polymorphism: the same and not quite the same. Cryst. Growth Des. 8, 3–5 (2008). https://doi.org/10.1021/cg701000q

  12. I. Weissbuch, R. Popovitz-Biro, M. Lahav, L. Leiserowitz, Understanding and control of nucleation, growth, habit, dissolution and structure of two- and three-dimensional crystals using “Tailor-made” auxiliaries. Acta Crystallogr. Sect. B 51, 115–148 (1995). https://doi.org/10.1107/S0108768194012061

    Article  Google Scholar 

  13. A. Llinàs, J.M. Goodman, Polymorph control: past, present, and future. Drug Discov. Today 13, 198–210 (2008). https://doi.org/10.1016/j.drudis.2007.11.006

    Article  PubMed  Google Scholar 

  14. J. Bernstein, Polymorphism - a perspective. Cryst. Growth Des. 11, 632–650 (2011). https://doi.org/10.1021/cg1013335

    Article  CAS  Google Scholar 

  15. A.J. Cruz-Cabeza, N. Feeder, R.J. Davey, Open questions in organic crystal polymorphism. Commun. Chem. 3, 142 (2020). https://doi.org/10.1038/s42004-020-00388-9

    Article  CAS  Google Scholar 

  16. J. Zaccaro, J. Matic, A.S. Myerson, B.A. Garetz, Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected γ-polymorph. Cryst. Growth Des. 1, 5–8 (2001). https://doi.org/10.1021/cg0055171

    Article  CAS  Google Scholar 

  17. K. Yuyama, T. Rungsimanon, T. Sugiyama, H. Masuhara, Selective fabrication of α- and γ-polymorphs of glycine by intense polarized continuous wave laser beams. Cryst. Growth Des. 12, 2427–2434 (2012). https://doi.org/10.1021/cg300065x

    Article  CAS  Google Scholar 

  18. M.O. Portmann, D. Kilcast, Psychophysical characterization of new sweeteners of commercial importance for the EC food industry. Food Chem. 56, 291–302 (1996). https://doi.org/10.1016/0308-8146(96)00026-X

    Article  CAS  Google Scholar 

  19. J. Bongaerts, M. Krämer, U. Müller, L. Raeven, M. Wubbolts, Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng. 3, 289–300 (2001). https://doi.org/10.1006/mben.2001.0196

    Article  CAS  PubMed  Google Scholar 

  20. Y. Hirabayashi, S. Furuya, Roles of L-serine and sphingolipid synthesis in brain development and neuronal survival. Prog. Lipid Res. 47, 188–203 (2008). https://doi.org/10.1016/j.plipres.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  21. L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, Q. Zhan, Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles. Photonics Res. 6, 138–143 (2017). https://doi.org/10.1364/PRJ.6.000138

    Article  Google Scholar 

  22. W.Y. Chiang, T. Okuhata, A. Usman, N. Tamai, H. Masuhara, Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses. J. Phys. Chem. B 118, 14010–14016 (2014). https://doi.org/10.1021/jp502524f

    Article  CAS  PubMed  Google Scholar 

  23. H.Y. Yoshikawa, Y. Hosokawa, H. Masuhara, Explosive crystallization of urea triggered by focused femtosecond laser irradiation. Jpn. J. Appl. Phys. 45, L23–L26 (2006). https://doi.org/10.1143/JJAP.45.L23

    Article  CAS  Google Scholar 

  24. L. Pan, A. Ishikawa, N. Tamai, Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence. Phys. Rev. B 75, 161305 (2007). https://doi.org/10.1103/PhysRevB.75.161305

  25. Y. Harada, T. Asakura, Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124, 529–541 (1996). https://doi.org/10.1016/0030-4018(95)00753-9

    Article  CAS  Google Scholar 

  26. P.R. ten Wolde, D. Frenkel, Homogeneous nucleation and the Ostwald step rule. Z. Phys. Chem. Chem. Phys. 1, 2191–2196 (1999). https://doi.org/10.1039/A809346F

    Article  Google Scholar 

  27. C.S. Wu, H. Y. Yoshikawa, T. Sugiyama, Bidirectional polymorphic conversion by focused femtosecond laser irradiation. Jpn. J. Appl. Phys. 59, SIIH02 (2020). https://doi.org/10.35848/1347-4065/ab7ae2

  28. R. Mohan, K.K. Koo, C. Strege, A.S. Myerson, Effect of additives on the transformation behavior of L-phenylalanine in aqueous solution. Ind. Eng. Chem. Res. 40, 6111–6117 (2001). https://doi.org/10.1021/ie0105223

    Article  CAS  Google Scholar 

  29. J. Lu, Q. Lin, Z. Li, S. Rohani, Solubility of L-phenylalanine anhydrous and monohydrate forms: experimental measurements and predictions. J. Chem. Eng. Data. 57, 1492–1498 (2012). https://doi.org/10.1021/je201354k

    Article  CAS  Google Scholar 

  30. A. Brodeur, S.L. Chin, Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B 16, 637–650 (1999). https://doi.org/10.1364/JOSAB.16.000637

    Article  CAS  Google Scholar 

  31. S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, V.P. Kandidov, Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser). J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999). https://doi.org/10.1142/S0218863599000096

    Article  Google Scholar 

  32. A. Saliminia, S.L. Chin, R. Vallée, Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 μm. Opt. Exp. 13, 5731–5738 (2005). https://doi.org/10.1364/OPEX.13.005731

  33. J. Lu, J. Wang, Z. Li, S. Rohani, Characterization and pseudopolymorphism of l-phenylalanine anhydrous and monohydrate forms. Afr. J. Pharm. Pharmacol. 6, 269–277 (2012). https://doi.org/10.5897/AJPP11.842

    Article  CAS  Google Scholar 

  34. Y. Hosokawa, H. Adachi, M. Yoshimura, Y. Mori, T. Sasaki, H. Masuhara, Femtosecond laser-induced crystallization of 4-(dimethylamino)-N-methyl-4-stilbazolium tosylate. Cryst. Growth Des. 5, 861–863 (2005). https://doi.org/10.1021/cg049709y

    Article  CAS  Google Scholar 

  35. T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, M. Haga, Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface. ACS Appl. Mater. Interfaces 4, 1158–1163 (2012). https://doi.org/10.1021/am201799b

    Article  CAS  PubMed  Google Scholar 

  36. W.C. Wang, S.F. Wang, T. Sugiyama, L-serine polymorphism controlled by optical trapping with high-repetition-rate femtosecond laser pulses. J. China Chem. Soc. (2021) in print

    Google Scholar 

  37. R.M. Dannenfelser, S.H. Yalkowsky, Sci. Total Environ. 109–110, 625–628 (1991). https://doi.org/10.1016/0048-9697(91)90214-Y

    Article  Google Scholar 

  38. T. Tsuji, R. Nakatsuka, K. Nakajima, K. Doi, S. Kawano, Effect of hydrodynamic inter-particle interaction on the orbital motion of dielectric nanoparticles driven by an optical vortex. Nanoscale 12, 6673–6690 (2020). https://doi.org/10.1039/C9NR10591C

    Article  CAS  PubMed  Google Scholar 

  39. F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, S. Kawano, Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels. J. Phys. Chem. C 122, 17963–17975 (2018). https://doi.org/10.1021/acs.jpcc.8b02701

    Article  CAS  Google Scholar 

  40. P.T.C. Freire, F.M. Barboza, J.A. Lima, F.E.A. Melo, J.M. Filho, Raman spectroscopy of amino acid crystals, in Raman Spectroscopy and Applications. ed. by K. Maaz (IntechOpen Limited, London, 2017), pp. 210–215

    Google Scholar 

  41. C.J. Luk, Solubility and pseudo-polymorphic transitions of L-serine in water-methanol system, Thesis in Georgia Institute of Technology, 1, 1–103 (2005). http://hdl.handle.net/1853/6832

  42. K. Linhong, L. Daniel, C. Petr, Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl. Opt. 32, 3531–3540 (1993). https://doi.org/10.1364/AO.32.003531

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruki Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sugiyama, T. (2022). Crystallization and Polymorphism of Amino Acids Controlled by High-Repetition-Rate Femtosecond Laser Pulses. In: Ishikawa, Y., et al. High-Energy Chemistry and Processing in Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-16-7798-4_15

Download citation

Publish with us

Policies and ethics