Skip to main content

The Chemistry of Antidiabetic Plants

  • Chapter
  • First Online:
Plant Genetic Resources, Inventory, Collection and Conservation

Abstract

A great many plant species that demonstrate activity against hyperglycemia are listed in literature. They are known to contain classes of compounds with biological activities including terpenoids, carotenoids, flavonoids, and others such as alkaloids and glycosides. These plants are variously reported to show antidiabetic effects. Some of the plant sources commonly found around various continents include aloe vera, Amaranthus tricolor, Anacardium occidentale, Momordica charantia (bitter gourd), Moringa oleifera, Gongronema latifolia, Vernonia amygdalina, Tridax procumbens, Phyllanthus amarus, Phyllanthus niruri, Piper longum, Salvia miltiorrhiza, Ocimum gratissimum, Mangifera indica, etc.

However, these plants do not exert their effects by their mere beauty and form but by their constituents of chemical entities in structural orders that behooves on them these medicinal capabilities. This review attempts to highlight some classes of plant natural products or secondary metabolites and some specificities that render them the hidden medicines for the management and treatment of diabetes in the floral factories, found everywhere in our environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenavoli L, Izzo AA, Milić N, Cicala C, Santini A, Capasso R (2018) Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res 32:2202–2213

    Article  PubMed  Google Scholar 

  • Ahad A, Mujeeb M, Ahsan H, Siddiqui WA (2014) Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie 106:101–110

    Article  CAS  PubMed  Google Scholar 

  • Alarcon E, Roman RR, Floress SJ (1993) Plantas medicinales usadas en el control de la diabetes mellitus. Ciencia 44:363–381

    Google Scholar 

  • Alkhalidy H, Moore W, Zhang Y, McMillan R, Wang A, Ali M, Suh K-S, Zhen W, Cheng Z, Jia Z (2015) Small molecule kaempferol promotes insulin sensitivity and preserved pancreatic b-cell mass in middle-aged obese diabetic mice. J Diabetes Res 2015:532984

    Article  PubMed  PubMed Central  Google Scholar 

  • Amjid A, Ajaz AG, Mohd M, etc. (2014) Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharm 279:1–7

    Article  CAS  Google Scholar 

  • Ammon HPT (2012) Use of boswellic acids for the prophylaxis and/or treatment of damage to and/or inflammation of the islets of Langerhans

    Google Scholar 

  • Atal S, Atal S, Vyas S, Phadnis P (2016) Bio-enhancing effect of piperine with metformin on lowering blood glucose level in alloxan induced diabetic mice. Pharm Res 8:56–60

    CAS  Google Scholar 

  • Benzler J, Ganjam GK, Pretz D, Oelkrug R, Koch CE, Legler K, Stöhr S, Culmsee C, Williams LM, Tups A (2015) Central inhibition of ikkβ/nf-κb signaling attenuates high-fat diet-induced obesity and glucose intolerance. Diabetes 64:2015–2027

    Article  CAS  PubMed  Google Scholar 

  • Bijak MS (2017) A major bioactive component of milk thistle (Silybum marianum l. Gaernt.)—chemistry, bioavailability, and metabolism. Molecules 22:1942

    Article  PubMed Central  CAS  Google Scholar 

  • Camer D, Yu Y, Szabo A, Huang X (2014) The molecular mechanisms underpinning the therapeutic properties of oleanolic acid, its isomer and derivatives for type 2 diabetes and associated complications. Mol Nutr Food Res 58:1750–1759

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy BK, Cupta S, Gambhir SS, Gode KD (1981) Pancreatic beta-cell regeneration in rats by (−) epicatechin. Lancet 2:759

    Article  CAS  PubMed  Google Scholar 

  • Cicero AFG, Baggioni A (2016) Berberine and its role in chronic disease. Springer, Cham, Switzerland, p 928

    Google Scholar 

  • Coterill P, Scheinmannan E, Stenhouse I (1976) 1976 Kolaflavanone a new biflavanone from Garcinia kola. J Chem Soc Perkin Trans 6:532–539

    Google Scholar 

  • Cui J, Gong R, Hu S, Cai L, Chen L (2018) Gambogic acid ameliorates diabetes-induced proliferative retinopathy through inhibition of the hif-1α/VEGF expression via targeting pi3k/Akt pathway. Life Sci 192:293–303

    Article  CAS  PubMed  Google Scholar 

  • Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A (2013) Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized-controlled clinical trial. Int J Food Sci Nutr 65:117–123. https://doi.org/10.3109/09637486.2013.836738

    Article  CAS  PubMed  Google Scholar 

  • Den Hartogh DJ, Tsiani E (2019) Antidiabetic properties of naringenin: A citrus fruit polyphenol. Biomol Ther 9:99

    Google Scholar 

  • Durg S, Veerapur VP, Neelima S, Dhadde SB (2017) Antidiabetic activity of Embelia ribes, embelin and its derivatives: A systematic review and meta-analysis. Biomed Pharmacother 86:195–204

    Article  CAS  PubMed  Google Scholar 

  • Fang L-H, He G-R, Du G-H (2011) Anti-diabetic effect of salvianolic acid A and the possible mechanisms in rats with diabetes mellitus. Chinese J New Drugs 20(21):2063–2068

    CAS  Google Scholar 

  • Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N (2017) Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 56:591–601

    Article  PubMed  Google Scholar 

  • Guo C, Han F, Zhang C, Xiao W, Yang Z (2014) Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med 80:269–276

    Article  CAS  PubMed  Google Scholar 

  • Hamid K, Alqahtani A, Kim M-S, Cho J-L, Cui PH, Guang Li C (2015) Tetracyclic triterpenoids in herbal medicines and their activities in diabetes and its complications. Curr Top Med Chem 15:2406–2430

    Article  CAS  PubMed  Google Scholar 

  • Han L, Li C, Sun B, Xie Y, Guan Y, Ma Z, Chen L (2016) Protective effects of celastrol on diabetic liver injury via tlr4/myd88/NF-κB signaling pathway in type 2 diabetic rats. J Dia Res 2016:2641248. https://doi.org/10.1155/2016/2641248

    Article  CAS  Google Scholar 

  • He S, Zhao T, Guo H, Meng Y, Qin G, Goukassian DA, Han J, Gao X, Zhu Y (2016) Coordinated activation of VEGF/VEGFR-2 and PPAR-delta pathways by a multi-component Chinese medicine DHI accelerated recovery from peripheral arterial disease in type 2 diabetic mice. PLoS One 11(12):e0167305. https://doi.org/10.1371/journal.pone.0167305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hii CST, Howell SL (1984) Effects of epicatechin on rat islets of Langerhans. Diabetes 33:291–296

    Article  CAS  PubMed  Google Scholar 

  • Hikino H, Konno C, Takahashi M, Murakami M, Kato Y, Karikura M, Hayashi T (1986b) Isolation and hypoglycemic activity of dioscorans A, B, C, D, E and F; glycans of Dioscorea [japonica rhizophors]. Planta Med 52:168–171

    Article  Google Scholar 

  • Hikino H, Takahashi M, Murakam IM, Konno C, Mirin Y, Karikura M, Hayashi T (1986a) Isolation and hypoglycemic activity of arborans A and B, glycans of Aloe arborescens var natalensis leaves. Int Crude Drug Res 24:183–186

    Article  CAS  Google Scholar 

  • Hikino H, Takahashi M, Oshima Y (1988) Konno C: Isolation and hypoglycemic activity of oryzabrans A, B, C and D, glycans of Oryza sativa bran. Planta Med 54:1–3

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Shih HY, Chia YC, Lee CH, Ashida H, Lai YK, Weng CF (2014) Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 58:1168–1176

    Article  CAS  PubMed  Google Scholar 

  • Huang SH, Lin GJ, Chu CH, Yu JC, Chen TW, Chen YW, Chien MW, Chu CC, Sytwu HK (2013) Triptolide ameliorates autoimmune diabetes and prolongs islet graft survival in nonobese diabetic mice. Pancreas 42:442–451

    Article  CAS  PubMed  Google Scholar 

  • Hwang SL, Yang JH, Jeong YT, Kim YD, Li X, Lu Y, Chang YC, Son KH, Chang HW (2013) Tanshinone IIA improves endoplasmic reticulum stress-induced insulin resistance through AMP-activated protein kinase. Biochem Biophys Res Commun 430(4):1246–1252. https://doi.org/10.1016/j.bbrc.2012.12.066

    Article  CAS  PubMed  Google Scholar 

  • Ivorra MD, Paya M, Villar A (1989) A review of natural products and plants as potential antidiabetic drugs. Ethnopharmacal 27:243–275

    Article  CAS  Google Scholar 

  • Iwu M, Okunji CO, Akah PT, Corley D (1990) Dioscoretine the hypoglycemic principle of Dioscorea dumetorum. Planta Med 56:119–120

    Article  CAS  PubMed  Google Scholar 

  • Jadhav R, Puchchakala G (2011) Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Int J Pharm Pharm Sci 4:251–256

    Google Scholar 

  • Jaggi AS, Singh N (2016) Silymarin and its role in chronic diseases. In: Drug discovery from mother nature. Springer, Cham, pp 25–44

    Google Scholar 

  • Jalil U, Jabbar A, Hasan C (1986) Hypoglycemic activities of the glycosides of Momordica cochinchinensis. J Bangladesh Acad Sci 10:25–30

    Google Scholar 

  • Jeong SO, Son Y, Lee JH, Cheong YK, Park SH, Chung HT, Pae HO (2015) Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Mol Med Rep 12:937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappel VD, Cazarolli LH, Pereira DF, Postal BG, Zamoner A, Reginatto FH, Silva FRMB (2013) Involvement of glut-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. J Pharm Pharmacol 65:1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Karawya MS, Wahab SM, Farrag NM (1984) Diphenylamine, an antihyperglycemic agent from onion and tea. Nat Prod 47:775–780

    Article  CAS  Google Scholar 

  • Kolb H, Kiesel H, Greulich B, Bosh V (1982) Lack of antidiabetic effect of (−) epicatechin. Lancet 1:13031304

    Google Scholar 

  • Kuhad A, Chopra K (2009) Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 57:456–462

    Article  CAS  PubMed  Google Scholar 

  • Kunwar A, Priyadarsini KI (2016) Curcumin and its role in chronic diseases. In: Gupta SC, Prasad S, Aggarwal BB (eds) Advances in experimental medicine and biology. Anti-inflammatory nutraceuticals and chronic diseases, vol 928. Springer, Cham, pp 1–26

    Google Scholar 

  • Lau YS, Tian XY, Mustafa MR, Murugan D (2013) Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4oxidative stress cascade. Br J Pharmacol 170:1190–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CG, Ni CL, Yang M, Tang YZ, Li Z, Zhu YJ, Jiang ZH, Sun B, Li CJ (2018) Honokiol protects pancreatic β-cell against high glucose and intermittent hypoxia-induced injury by activating Nrf2/are pathway in vitro and in vivo. Biomed Pharmacother 97:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Li G, Xu H, Zhu S et al (2013a) Effects of neferin on ccl5 and ccr5 expression in SCG of type 2 diabetic rats. Brain Res Bull 90:79–87

    Article  CAS  PubMed  Google Scholar 

  • Li J, Shen F, Guan C, Wang W, Sun X, Fu X et al (2014) Activation of Nrf2 protects against triptolide-induced hepatotoxicity. PLoS One 9(7):e100685. https://doi.org/10.1371/journal.pone.0100685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XH, Xin X, Wang Y et al (2013b) Pentamethylquercetin protects against diabetes-related cognitive deficits in diabetic Goto-Kakizaki rats. J Alzheimers Dis 34:755–767

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Xu Q, Xu WH, Guo XH, Zhang S, Chen YD (2015) Mechanisms of protection against diabetes-induced impairment of endothelium-dependent vasorelaxation by Tanshinone IIA. Biochim Biophys Acta 1850(4):813–823. https://doi.org/10.1016/j.bbagen.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  • Ling C, Jinping L, Xia L, Renyong Y (2013) Ursolic acid provides kidney protection in diabetic rats. Curr Res 75:59–63

    Google Scholar 

  • Liu H-T, Wang Y-F, Olaleye O, Zhu Y, Gao X-M, Kang L-Y, Zhao T (2013) Characterization of in vivo antioxidant constituents and dual-standard quality assessment of Danhong injection. Biomed Chromatogr 27(5):655–663. https://doi.org/10.1002/bmc.2842

    Article  CAS  PubMed  Google Scholar 

  • Lopez PM, Mora PG, Wysocka W, Maiztegui B, Alzugaray ME, Zoto HD, Borelli MI (2004) Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. Eur J Pharmacol 504:139–142

    Article  CAS  Google Scholar 

  • Lotlikar MM, Rajarama R (1966) Pharmacology of a hypoglycaemic principle isolated from the fruits of Momordica charantia Linn. Indian Pharm 28:129–133

    CAS  Google Scholar 

  • Madhuri K, Naik PR (2017) Modulatory effect of garcinol in streptozotocin-induced diabetic Wistar rats. Arch Physiol Biochem 123:322–329

    Article  CAS  PubMed  Google Scholar 

  • Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D (2011) Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One 6:e21226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancha-Ramirez AM, Slaga TJ (2016) Ursolic acid and chronic disease: an overview of UA’s effects on prevention and treatment of obesity and cancer. In: Gupta SC, Prasad S, Aggarwal BB (eds) Advances in experimental medicine and biology. Anti-inflammatory nutraceuticals and chronic diseases, vol 928. Springer, Cham

    Google Scholar 

  • Maries RJ, Farnsworth NR (1995) Antidiabetic plants and their active constituents. Phytomedicine 2:137–189

    Article  Google Scholar 

  • Minakawa M, Miura Y, Yagasaki K (2012) Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in l6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochem Biophys Res Commun 422:469–475

    Article  CAS  PubMed  Google Scholar 

  • Monsereenunurson R (1980) Effect of Capsicum annuum on blood glucose level. Quar J Crude Drug Res 18:1–7

    Article  Google Scholar 

  • Ng TB, Yeung HW (1985) Hypoglycemic constituents of Panax ginseng. Gen Pharmacol 16(6):549–552. https://doi.org/10.1016/0306-3623(85)90140-5

    Article  CAS  PubMed  Google Scholar 

  • Norris LE, Collene AL, Asp ML, Hsu JC, Liu L-F, Richardson JR, Li D, Bell D, Osei K, Jackson RD, Belury MA (2009) Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am J Clin Nutr 90(3):468–476. https://doi.org/10.3945/ajcn.2008.27371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong KW, Hsu A, Tan BKH (2012) Chlorogenic acid stimulates glucose transport in skeletal muscle via ampk activation: A contributor to the beneficial effects of coffee on diabetes. PLoS One 7:e32718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orgah JO, Wanga SHY, Jianga M, Wanga Y, Orgah EA, Duand Y, Zhaoa B, Zhanga B, Hand J, Zhua Y (eds) (2020) Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications. Pharmacol Res 153:104654

    Google Scholar 

  • Oza MJ, Kulkarni YA (2016) Phytochemical and complication in type 2 diabetes—an update. Int J Pharm Sci Res 7:14–24

    CAS  Google Scholar 

  • Pan GY, Huang ZJ, Wang GJ, Fawcett JP, Liu XD, Zhao XC, Sun JG, Xie YY (2003) The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med 69:632–636

    Article  CAS  PubMed  Google Scholar 

  • Pandey VK, Mathur A, Khan MF, Kakkar P (2019) Activation of perk-eif2α-atf4 pathway contributes to diabetic hepatotoxicity: attenuation of er stress by morin. Cell Signal 59:41–52

    Article  CAS  PubMed  Google Scholar 

  • Paoli P, Cirri P, Caselli A, Ranaldi F, Bruschi G, Santi A, Camici G (2013) The insulin-mimetic effect of morin: A promising molecule in diabetes treatment. Biochim Biophys Acta 1830:3102–3111

    Article  CAS  PubMed  Google Scholar 

  • Pinto Vierira IG, Mendes FN, da Silva SC, Paim RT, da Silva BB, Benjamin SR, Florean EP, Florindo Guedes MI (2018) Antidiabetic effects of galactomannans from Adenanthera pavonina L. in streptozotocin-induced diabetic mice. Asian Pac. J Trop Med 11:116–122

    Google Scholar 

  • Prasath GS, Pillai SI, Subramanian SP (2014) Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur J Pharmacol 740:248–254

    Article  CAS  PubMed  Google Scholar 

  • Prasath GS, Subramanian SP (2014) Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 28:442–449. https://doi.org/10.1002/jbt.21583

    Article  CAS  PubMed  Google Scholar 

  • Prince P, Kamalakkannan N (2006) Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J Biochem Mol Toxicol 20:96–102

    Article  CAS  Google Scholar 

  • Pushpa K, Jain S, c., Panagariva, A., Dixit, V. P. (1981) Hypoglycemic activity of polypeptide from a plant source. J Nat Prod 44:648–655

    Article  Google Scholar 

  • Raman A, Lau C (1996) Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 2:349–362

    Article  CAS  PubMed  Google Scholar 

  • Razavi T, Kouhsari SM, Abnous K (2018) Morin exerts anti-diabetic effects in human hepg2 cells via down-regulation of mir-29a. Exp Clin Endocrinol Diabetes 127:615–622

    PubMed  Google Scholar 

  • Sheela N, Jose MA, Sathyamurthy D, Kumar BN (2013) Effect of silymarin on streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats. Iran J Kidney Dis 7:117–123

    PubMed  Google Scholar 

  • Sterne J (1982) Pharmacology and mode of action of the hypoglycemic guanidine derivatives. In: Campbell GD (ed) Oral hypoglycemic agents. Academic Press, New York, pp 193–245

    Google Scholar 

  • Szkudelski T, Szkudelska K (2015) Resveratrol and diabetes: from animal to human studies. Biochim Et Biophys Acta (BBA)-Mol Basis Dis 1852:1145–1154

    Article  CAS  Google Scholar 

  • Taguchi K, Hida M, Hasegawa M, Matsumoto T, Kobayashi T (2016) Dietary polyphenol morin rescues endothelial dysfunction in a diabetic mouse model by activating the Akt/eNOS pathway. Mol Nutr Food Res 60:580–588

    Article  CAS  PubMed  Google Scholar 

  • Tan M-J, Ye J-M, Turner N, Hohnen-Behrens C, Ke C-Q, Tang C-P, Chen T, Weiss H-C, Gesing E-R, Rowland A, James DE, Ye Y (2015) Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 15(5):520

    Article  CAS  Google Scholar 

  • Tang DQ, Wei YQ, Yin XX, al., e. (2011) In vitro suppression of quercetin on hypertrophy and extracellular matrix accumulation in rat glomerular mesangial cells cultured by high glucose. Fitoterapia 82:920–926

    Article  CAS  PubMed  Google Scholar 

  • Taslimi P, Kandemir FM, Demir Y, Ä°leritürk M, Temel Y, Caglayan C, Gulçin Ä° (2019) The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: pharmacological evaluation of some metabolic enzyme activities. J Biochem Mol Toxicol:e22313

    Google Scholar 

  • Tomoda M, Shimizu N, Oshima Y, Takahashi M, Murakami M, Hikino H (1987) Hypoglycemic activity of twenty plant mucilages and three modified products. Planta Med 53:8–12

    Article  CAS  PubMed  Google Scholar 

  • Tsai SJ, Huang CS, Mong MC, al., e. (2012) Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. J Agric Food Chem 60:514–521

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Shi C, Yang X, Yang M, Sun H, Wang C (2015) Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. Eur J Pharmacol 744:52–58

    Article  CAS  Google Scholar 

  • Wang G, Li W, Lu X, Bao P, Zhao X (2012a) Luteolin ameliorates cardiac failure in type i diabetic cardiomyopathy. J Diabetes Complicat 26:259–265

    Article  Google Scholar 

  • Wang GG, Lu XH, Li W, Zhao X, Zhang C (2011) Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid-Based Complement Altern Med 2011:323171

    Article  Google Scholar 

  • Wang Q, Zhao Z, Shang J, Xia W (2014) Targets and candidate agents for type 2 diabetes treatment with computational bioinformatics approach. J Diabetes Res 2014:763936

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SYH, Tan W, Wu X, Chen R, Cao J, Chen M, Y. (2012b) Wang, compatibility art of traditional Chinese medicine: from the perspective of herb pairs. J Ethnopharmacol 143(2):412–423. https://doi.org/10.1016/j.jep.2012.07.033

    Article  PubMed  Google Scholar 

  • Wiedemann M, Gurrola-Díaz C, Vargas-Guerrero B, Wink M, García-López P, Düfer M (2015) Lupanine improves glucose homeostasis by influencing KATP channels and insulin gene expression. Molecules 20:19085–19100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Zhang T, Gong C, Sheng Y, Lu B, Zhou L, Ji L, Wang Z (2016) Erianin inhibits high glucose-induced retinal angiogenesis via blocking erk1/2-regulated hif-1α-VEGF/VEGFR2 signaling pathway. Sci Rep 6:34306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Declaration

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orgah, E.A. et al. (2022). The Chemistry of Antidiabetic Plants. In: Ramamoorthy, S., Buot, I.J., Chandrasekaran, R. (eds) Plant Genetic Resources, Inventory, Collection and Conservation. Springer, Singapore. https://doi.org/10.1007/978-981-16-7699-4_14

Download citation

Publish with us

Policies and ethics