Skip to main content

Indoor Air Quality in Elderly Care Centers

  • Reference work entry
  • First Online:
Handbook of Indoor Air Quality

Abstract

A growing body of literature indicates that concentrations of indoor particulate matter and gaseous pollutants in elderly care centers (ECCs) often exceed those recorded in nearby outdoor environment. At present, unlike the outdoors, indoor air quality (IAQ) in ECCs is not regulated and is seldom monitored. Elderly citizens commonly spend most of their day indoors where they are exposed to indoor air pollutants, even at low concentrations, for long periods of time. Given that many ECCs residents, especially those of advanced age, are more susceptible to the effects of air pollutants, this prolonged exposure may adversely impact their health. Despite these facts, there are few data among older adults and their exposure to IAQ pollutants in ECCs. In the current pandemic situation, IAQ has become an even more prominent research topic, encompassing issues such as the need of good ventilation of indoor spaces. Thus, this chapter presents the highlights of the existing knowledge on IAQ in ECCs. It summarizes the most recent findings related to: (i) major indoor air pollutants, its source signatures, levels and health relevance; (ii) current and future perspectives on IAQ health-based guidelines; and, finally, (iii) strategies to assure a healthy indoor environment. This overview underlines that indoor air pollution in ECCs represents a major global public health problem requiring further efforts in research that can inform evidence-based risk management and public health interventions to reduce current and future risks associated with poor IAQ in ECCs in line with the 2030 Agenda for Sustainable Development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida-Silva M, Wolterbeek HT, Almeida SM (2014) Elderly exposure to indoor air pollutants. Atmos Environ 85:54–63

    CAS  Google Scholar 

  • Almeida-Silva M, Almeida SM, Pegas PN, Nunes T, Alves CA, Wolterbeek HT (2015) Exposure and dose assessment to particle components among an elderly population. Atmos Environ 102:156–166

    CAS  Google Scholar 

  • Almeida-Silva M, Faria T, Saraga D, Maggos T, Wolterbeek HT, Almeida SM (2016) Source apportionment of indoor PM10 in Elderly Care Centre. Environ Sci Pollut Res Int 23(8):7814–7827

    CAS  Google Scholar 

  • Amouei Torkmahalleh M, Gorjinezhad S, Unluevcek HS, Hopke PK (2017) Review of factors impacting emission/concentration of cooking generated particulate matter. Sci Total Environ 15(586):1046–1056

    Google Scholar 

  • Annesi-Maesano I, Norback D, Zielinski J, Bernard A, Gratziou C, Sigsgaard T, Sestini P, Viegi G, GERIE Study (2013) Geriatric study in Europe on health effects of air quality in nursing homes (GERIE study) profile: objectives, study protocol and descriptive data. Multidiscip Respir Med 8(1):71

    Google Scholar 

  • Annesi-Maesano I, Lavaud F, Raherison C, Kopferschmitt C, Blay F, Charpin D, Caillaud D (2012) Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study. Thorax 67:682–688

    Google Scholar 

  • Arif AA, Shah SM (2007) Association between personal exposure to volatile organic compounds and asthma among US adult population. Int Arch Occup Environ Health 80(8):711–719

    CAS  Google Scholar 

  • Arnold K, Teixeira JP, Mendes A, Madureira J, Costa S, Salamova A (2018) A pilot study on semivolatile organic compounds in senior care facilities: implications for older adult exposures. Environ Pollut 240:908–915

    CAS  Google Scholar 

  • ASHRAE Standard 62.1-2016 (2016) Ventilation for acceptable indoor air quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta

    Google Scholar 

  • ASHRAE (2020) COVID-19 (CORONAVIRUS) Preparedness resources. American Society of Heating, Ventilating, and Air-Conditioning Engineers

    Google Scholar 

  • Azuma K, Uchiyama I, Uchiyama S, Kunugita N (2016) Assessment of inhalation exposure to indoor air pollutants: screening for health risks of multiple pollutants in Japanese dwellings. Environ Res 145:39–49

    CAS  Google Scholar 

  • Azuma K, Ikeda K, Kagi N, Yanagi U, Osawa H (2018) Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: ambient particles and combined exposure to indoor air pollutants. Sci Total Environ 616–617:1649–1655

    Google Scholar 

  • Baudet A, Baurès E, Guegan H, Blanchard O, Guillaso M, Cann L, Gangneux JP, Florentin A (2021) Indoor air quality in healthcare and care facilities: chemical pollutants and microbiological contaminants. Atmosphere 12:1337

    CAS  Google Scholar 

  • Belanger K, Holford TR, Gent JF, Hill ME, Kezik JM, Leaderer BP (2013) Household levels of nitrogen dioxide and pediatric asthma severity. Epidemiology 24(2):320–330

    Google Scholar 

  • Belo J, Carreiro-Martins P, Papoila AL, Palmeiro T, Caires I, Alves M, Nigueira S, Aguiar F, Mendes A, Cano M, Botelho MA, Neuparth N (2019) The impact of indoor air quality on respiratory health of older people living in nursing homes: spirometric and exhaled breath condensate assessments. J Environ Sci Health A Tox Hazard Subst Environ Eng 54:1153–1158

    CAS  Google Scholar 

  • Bentayeb M, Norback D, Bednarek M, Bernard A, Cai G, Cerrai S, Eleftheriou KK, Gratziou C, Holst GJ, Lavaud F, Nasilowski J, Sestini P, Sarno G, Sigsgaard T, Wieslander G, Zielinski J, Viegi G, Annesi-Maesano I, GERIE Study (2015) Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe. Eur Res J45(5):1228–1238

    Google Scholar 

  • Bentayeb M, Billionnet C, Baiz N, Derbez M, Kirchner S, Annesi-Maesano I (2013) Higher prevalence of breathlessness in elderly exposed to indoor aldehydes and VOCs in a representative sample of French dwellings. Respir Med 107(10):1598–1607

    Google Scholar 

  • Bessonneau V, Mosqueron L, Berrubé A, Mukensturm G, Buffet-Bataillon S, Gangneux JP, Thomas O (2013) VOC contamination in hospital, from stationary sampling of a large panel of compounds, in view of healthcare workers and patients exposure assessment. PLoS One 8:e55535

    CAS  Google Scholar 

  • Blondeau P, Iordache V, Poupard O, Genin D, Allard F (2005) Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 15(1):2–12

    CAS  Google Scholar 

  • Bonnet P, Achille J, Malingre L, Duret H, Ramalho O, Mandin C (2018) VOCs in cleaning products used in age care and social facilities: identification of hazardous substances. AIMS Environ Sci 6(6):402–417

    Google Scholar 

  • Bräuner EV, Forchhammer L, Møller P, Barregard L, Gunnarsen L, Afshari A, Wåhlin P, Glasius M, Dragsted LO, Basu S, Raaschou-Nielsen O, Loft S (2008) Indoor particles affect vascular function in the aged: an air filtration-based intervention study. Am J Respir Crit Care Med 177(4):419–425

    Google Scholar 

  • Bräuner EV, Karottki DG, Frederiksen M, Kolarik B, Spilak M, Andersen ZJ, Vibenholt A, Ellermann T, Gunnarsen L, Loft S (2014) Residential ozone and lung function in the elderly. Indoor Built Environ 25(1):93–105

    Google Scholar 

  • Calderon-Garciduenas L, Serrano-Sierra A, Torres-Jardón R, Zhu H, Yuan Y, Smith D, Delgado-Chavez R, Cross JV, Medina-Cortina H, Kavanaugh M et al (2013) The impact of environmental metals in young urbanites’ brains. Exp Toxicol Pathol 65:503–511

    CAS  Google Scholar 

  • Campagnolo D, Saraga DE, Cattaneo A, Spinazzè A, Mandin C, Mabilia R, Perreca E, Sakellaris I, Canha N, Mihucz VG, Szigeti T, Ventura G, Madureira J, Fernandes EO, Kluizenaar Y, Cornelissen E, Hänninen O, Carrer P, Wolkoff P, Cavallo DM, Bartzis JG (2017) VOCs and aldehydes source identification in European office buildings-the OFFICAIR study. Build Environ 115:18–24

    Google Scholar 

  • Carrer P, de Oliveira FE, Santos H, Hänninen O, Kephalopoulos S, Wargocki P (2018) On the development of health-based ventilation guidelines: principles and framework. Int J Environ Res Public Health 15(7):1360

    Google Scholar 

  • Chao CY, Wong KK (2002) Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmos Environ 36(2):265–277

    CAS  Google Scholar 

  • Chau C, Tu EY, Chan D, Burnett J (2002) Estimating the total exposure to air pollutants for different population age groups in Hong Kong. Environ Int 27:617–630

    CAS  Google Scholar 

  • Chen CH, Wu CD, Chiang HC, Chu DC, Lee KY, Lin WY, Yeh JI, Tsai KW, Guo YLL (2019) The effects of fine and coarse PM on lung function among the elderly. Sci Rep 9:14790

    Google Scholar 

  • Coates J, Mar KA, Ojha N, Butler TM (2016) The influence of temperature on ozone production under varying NOx conditions – a modelling study. Atmos Chem Phys 16(18):11601–11615

    CAS  Google Scholar 

  • Conner TL, Norris GA, Landis MS, Williams RW (2001) Individual particle analysis of indoor, outdoor, and community samples from the 1998 Baltimore Particulate Matter Study. Atmos Environ 35:3935–3946

    CAS  Google Scholar 

  • Décret n° 2011–1727 du 2 décembre 2011 relatif aux valeurs-guides pour l’air intérieur pour le formaldéhyde et le benzene. J. Officiel République Française 2011. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024909119&categorieLien=id. Accessed 23 Mar 2021

  • Décret n° 2011–1728 du 2 décembre 2011 relatif à la surveillance de la qualité de l’air intérieur dans certains établissements recevant du public. J. Officiel République Française. 2011. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024909128. Accessed 23 Mar 2021

  • Dimakopoulou K, Grivas G, Samoli E, Rodopoulou S, Spyratos D, Papakosta D, Karakatsani A, Chaloulakou A, Katsouyanni K (2017) Determinants of personal exposure to ozone in school children. Results from a panel study in Greece. Environ Res 154:66–72

    CAS  Google Scholar 

  • DL n. 60/2013 de 5 de fevereiro de 2013 (2013) Diário da República, 2a Série n. 25; Ministérios das Finanças e da Economia e do Emprego: Lisboa, Portugal, 2013

    Google Scholar 

  • EC (2007) Green Paper towards a Europe free from tobacco smoke: policy options at EU level. gp_smoke_en.pdf (europa.eu)

  • ECA 27 2012 Report nr 27 of European Collaborative Action (ECA), Harmonisation framework for indoor products labelling schemes in the EU. Ispra. Environment and Quality of Life, EC Joint Research Centre, Italy

    Google Scholar 

  • EEA (2018) Air quality in Europe – 2018 report. ISBN: 978-92-9213-990-2. Air quality in Europe – 2018 – European Environment Agency (europa.eu). Accessed 12 Mar 2021

    Google Scholar 

  • EN 15251 (2007) Indoor environmental input parameters for design and assessment of energy performance of buildings e addressing indoor air quality, thermal environment, lighting and acoustics; EN 15251; CEN: Brussels, Belgium

    Google Scholar 

  • Ferro AR, Kopperud RJ, Hildemann LM (2004) Elevated personal exposure to particulate matter from human activities in a residence. J Expo Sci Environ Epidemiol 14:S34–S40

    CAS  Google Scholar 

  • Fisk WJ, Chan WR (2017) Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires. Indoor Air 27:191–204

    CAS  Google Scholar 

  • Folletti I, Siracusa A, Paolocci G (2017) Update on asthma and cleaning agents. Curr Opin Allergy Clin Immunol 17(2):90–95

    CAS  Google Scholar 

  • HESE (2006) Health Effects of School Environment (HESE). Final Scientific Report. http://ec.europa.eu/health/ph_projects/2002/pollution/pollution_2002_04_en.htm. Accessed 12 Mar 2021

  • HGR 8794 (2017) Indoor air quality in Belgium. HGR: Brussel. 2017; Advies nr. 8794. Available online: https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/hgr_8794_advice_iaq.pdf. Accessed 9 Mar 2021

  • González-Martín J, Kraakman NJR, Pérez C, Lebrero R, Munoz R (2021) A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 262:1238376

    Google Scholar 

  • Hamanaka RB, Mutlu GM (2018) Particulate matter air pollution: effects on the cardiovascular system. Front Endocrinol 9:680

    Google Scholar 

  • Hopke PK, Ramadan Z, Paatero P, Norris GA, Landis MS, Williams RW, Lewis CW (2003) Receptor modeling of ambient and personal exposure samples: 1998 Baltimore Particulate Matter Epidemiology-Exposure Study. Atmos Environ 37:3289–3302

    CAS  Google Scholar 

  • Hopke PK, Croft D, Zhang W, Lin S, Masiol M, Squizzato S, Thurston SW, van Wijngaarden E, Utell MJ, Rich DQ (2019) Changes in the acute response of respiratory diseases to PM2.5 in New York State from 2005 to 2016. Sci Total Environ 10(677):328–339

    Google Scholar 

  • Hulin M, Simoni M, Viegi G, Annesi-Maesano I (2012) Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur Respir J 40:1033–1045

    CAS  Google Scholar 

  • Hwang SH, Roh J, Park WM (2018) Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environ Pollut 242(Pt A):700–708

    CAS  Google Scholar 

  • Hwang SH, Park WM (2020) Indoor air concentrations of carbon dioxide (CO2), nitrogen dioxide (NO2), and ozone (O3) in multiple healthcare facilities. Environ Geochem Health 42(5):1487–1496

    CAS  Google Scholar 

  • ISO 16000-6:2011: Indoor air – Part 6: determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID

    Google Scholar 

  • Khalid M, Abdollahi M (2021) Environmental distribution of personal care products and their effects on human health. Iran J Pharm Res 20(1):216–253

    CAS  Google Scholar 

  • Kelly FJ, Fussell JC (2019) Improving indoor air quality, health and performance within environments where people live, travel, learn and work. Atmos Environ 200:90–109

    CAS  Google Scholar 

  • Kienzler A, Bopp SK, van der Linden S, Berggren E, Worth A (2016) Regulatory assessment of chemical mixtures: requirements, current approaches and future perspectives. Regul Toxicol Pharmacol 80:321–334

    CAS  Google Scholar 

  • Kim H-H, Lee G-W, Yang J-Y, Jeon J-M, Lee W-S, Lim J-Y, Lee H-S, Gwak Y-K, Shin D-C, Lim Y-W (2014) Indoor exposure and health risk of polycyclic aromatic hydrocarbons (PAHs) via public facilities PM2.5, Korea (II). Asian J Atmos Environ 8:35–47

    Google Scholar 

  • Kotzias D et al (2005) The INDEX project. Critical appraisal of the setting and implementation of indoor exposure limits in the EU. Ispra, European Commission Joint Research Centre

    Google Scholar 

  • Lanki T, Alm S, Ruuskanen J, Janssen NAH, Jantunen M, Pekkanen J (2002) Photometrically measured continuous personal PM2.5 exposure: levels and correlation to a gravimetric method. J Expo Anal Environ Epidemiol 12:172–178

    CAS  Google Scholar 

  • Lanki T, Ahokas A, Alm S, Janssen NA, Hoek G, De Hartog JJ, Brunekreef B, Pekkanen J (2007) Determinants of personal and indoor PM2.5 and absorbance among elderly subjects with coronary heart disease. J Expo Sci Environ Epidemiol 17(2):124–133

    CAS  Google Scholar 

  • Lee K, Choi JH, Lee S, Park HJ, Oh YJ, Kim GB, Lee WS, Son BS (2018) Indoor levels of volatile organic compounds and formaldehyde from emission sources at elderly care centers in Korea. PLoS One 13(6):e0197495

    Google Scholar 

  • Leikauf GD, Kim SH, Jang AS (2020) Mechanisms of ultrafine particle-induced respiratory health effects. Exp Mol Med 52(3):329–337

    CAS  Google Scholar 

  • Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, Horner E, Nel A (2016a) A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 138(2):386–396

    CAS  Google Scholar 

  • Li T, Cao S, Fan D, Zhang Y, Wang B, Zhao X, Leaderer BP, Shen G, Zhang Y, Duan X (2016b) Household concentrations and personal exposure of PM2.5 among urban residents using different cooking fuels. Sci Total Environ 548:6–12

    Google Scholar 

  • Lin TC, Krishnaswamy GH, Chi DS (2008) Incense smoke: clinical, structural and molecular effects on airway disease. Clin Mol Allergy 6:3

    Google Scholar 

  • Madureira J, Paciência I, Cavaleiro-Rufo J, de Oliveira FE (2016) Indoor pollutant exposure among children with and without asthma in Porto, Portugal, during the cold season. Environ Sci Pollut Res Int 23(20):20539–20552

    CAS  Google Scholar 

  • Madureira J, Slezakova K, Costa C, Pereira MC, Teixeira JP (2020a) Assessment of indoor air exposure among newborns and their mothers: levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments. Environ Pollut 264:114746

    CAS  Google Scholar 

  • Madureira J, Slezakova K, Silva AI, Lage B, Mendes A, Aguiar L, Pereira MC, Teixeira JP, Costa C (2020b) Assessment of indoor air exposure at residential homes: inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Sci Total Environ 717:137293

    CAS  Google Scholar 

  • Maio S, Sarno G, Baldacci S, Annesi-Maesano I, Viegi G (2015) Air quality of nursing homes and its effect on the lung health of elderly residents. Expert Rev Respir Med 9(6):671–673

    CAS  Google Scholar 

  • Mendes A, Teixeira-Gomes A, Costa S, Laffon B, Madureira J, Teixeira JP (2018) Indoor environments and elderly health. In: Elderly care: options, challenges and trends. Nova Science Publishers, Inc. ISBN: 978-1-53613-463-6 (e-Book); 978-1-53613-462-9

    Google Scholar 

  • Mendes A, Papoila AL, Carreiro-Martins P, Bonassi S, Caires I, Palmeiro T, Aguiar L, Pereira C, Neves P, Mendes D, Botelho MA, Neuparth N, Teixeira JP (2016) The impact of indoor air quality and contaminants on respiratory health of older people living in long-term care residences in Porto. Age Ageing 45(1):136–142

    Google Scholar 

  • Moran SE, Strachan DP, Johnston ID, Anderson HR (1999) Effects of exposure to gas cooking in childhood and adulthood on respiratory symptoms, allergic sensitization and lung function in young British adults. Clin Exp Allergy 29:1009–1013

    Google Scholar 

  • Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, Cao J, Dancer S, Floto A, Franchimon F, Haworth C, Hogeling J, Isaxon C, Jimenez JL, Kurnitski J, Li Y, Loomans M, Marks G, Marr LC, Mazzarella L, Melikov AK, Miller S, Milton DK, Nazaroff W, Nielsen PV, Noakes C, Peccia J, Querol X, Sekhar C, Seppänen O, Tanabe SI, Tellier R, Tham KW, Wargocki P, Wierzbicka A, Yao M (2020) How can airborne transmission of COVID-19 indoors be minimised? Environ Int 142:105832

    CAS  Google Scholar 

  • Morawska L, Ayoko GA, Bae GN, Buonanno G, Chao CYH, Clifford S, Fu SC, Hänninen O, He C, Isaxon C, Mazaheri M, Salthammer T, Waring MS, Wierzbicka A (2017) Airborne particles in indoor environment of homes, schools, offices and aged care facilities: the main routes of exposure. Environ Int 108:75–83

    CAS  Google Scholar 

  • Morawska L, Afshari A, Bae GN, Buonanno G, Chao CY, Hänninen O, Hofmann W, Isaxon C, Jayaratne ER, Pasanen P, Salthammer T, Waring M, Wierzbicka A (2013) Indoor aerosols: from personal exposure to risk assessment. Indoor Air 23(6):462–487

    CAS  Google Scholar 

  • Morishita M, Adar SD, D'Souza J, Ziemba RA, Bard RL, Spino C, Brook RD (2018) Effect of portable air filtration systems on personal exposure to fine particulate matter and blood pressure among residents in a low-income senior facility: a randomized clinical trial. JAMA Intern Med 178(10):1350–1357

    Google Scholar 

  • NASA (2019) https://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/

  • Nematollahi N, Kolev S, Steinemann A (2019) Volatile chemical emissions from 134 common consumer products. Air Qual Atmos Health 12(11):1259–1265

    CAS  Google Scholar 

  • Nicolas M, Ramalho O, Maupetit F (2007) Reactions between ozone and building products: Impact on primary and secondary emissions. Atmos Environ 41(15):3129–3138

    CAS  Google Scholar 

  • Ng TP, Hui KP, Tan WC (1993) Respiratory symptoms and lung function effects of domestic exposure to tobacco smoke and cooking by gas in non-smoking women in Singapore. J Epidemiol Community Health 47(6):454–458

    CAS  Google Scholar 

  • Norbäck D, Nordström K (2008) Sick building syndrome in relation to air exchange rate, CO(2), room temperature and relative air humidity in university computer classrooms: an experimental study. Int Arch Occup Environ Health 82(1):21–30

    Google Scholar 

  • Norbäck D, Björnsson E, Janson C, Widström J, Boman G (1995) Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings. Occup Environ Med 52(6):388–395

    Google Scholar 

  • Park H, Oh Y, Lee H, Woo W, Sohn J (2010) A study of indoor air quality of public facilities in Incheon city. J Korean Soc Environ Admin 16(2):53–61

    Google Scholar 

  • Pereira EL, Madacussengua O, Baptista P, Feliciano M (2021) Assessment of indoor air quality in geriatric environments of southwestern Europe. Aerobiologia 37:139–153

    Google Scholar 

  • Pilotto LS, Douglas RM, Attewell RG, Wilson SR (1997) Respiratory effects associated with indoor nitrogen dioxide exposure in children. Int J Epidemiol 26:788–796

    CAS  Google Scholar 

  • PHE (Public Health England) (2019) Indoor Air Quality Guidelines for Selected Volatile Organic Compounds (VOCs) in the UK. Available online: https://www.gov.uk/government/publications/air-quality-uk-guidelines-for-volatile-organic-compounds-in-indoor-spaces. Accessed 10 May 2021

  • Pohl HR, Roney N, Abadin HG (2011) Metal ions affecting the neurological system. Met Ions Life Sci 8:247–262

    CAS  Google Scholar 

  • Prada D, Lopez G, Solleiro-Villavicencio H, Garcia-Cuellar C, Baccarelli AA (2020) Molecular and cellular mechanisms linking air pollution and bone damage. Environ Res 185:109465

    CAS  Google Scholar 

  • Raaschou-Nielsen O, Andersen ZJ, Jensen SS, Ketzel M, Sorensen M, Hansen J, Loft S (2012) Traffic air pollution and mortality from cardiovascular disease and all causes: a Danish cohort study. Environ Health 11:60

    CAS  Google Scholar 

  • REHVA (2020) COVID-19 Guidance REHVA_COVID-19_guidance_document_V3_03082020.pdf. Accessed 14 May 2021

  • Rivas I, Beddows DCS, Amato F, Green DC, Järvi L, Hueglin C, Reche C, Timonen H, Fuller GW, Niemi JV, Pérez N, Aurela M, Hopke PK, Alastuey A, Kulmala M, Harrison RM, Querol X, Kelly FJ (2020) Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environ Int 135:105345

    CAS  Google Scholar 

  • Saenz JL, Adar SD, Zhang YS, Wilkens J, Chattopadhyay A, Lee J, Wong R (2021) Household use of polluting cooking fuels and late-life cognitive function: a harmonized analysis of India, Mexico, and China. Environ Int 156:106722

    Google Scholar 

  • Segalin B, Kumar P, Micadei K, Fornaro A, Gonçalves FLT (2017) Size–segregated particulate matter inside residences of elderly in the Metropolitan Area of São Paulo, Brazil. Atmos Environ 148:139–151

    CAS  Google Scholar 

  • Singer BC, Coleman BK, Destaillats H, Hodgson AT, Lunden MM, Weschler CJ, Nazaroff WW (2006) Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmos Environ 40(35):6696–6710

    CAS  Google Scholar 

  • Sim S, Moon J, Kim Y, Tae J (2010) Emission rates of selected volatile organic compounds and formaldehyde in newly constructed apartment. Toxicol Environ Heal Sci 2(4):263–267

    Google Scholar 

  • Simoni M, Carrozzi L, Baldacci S, Scognamiglio A, Di Pede F, Sapigni T, Viegi G (2002) The Po River Delta (north Italy) indoor epidemiological study: effects of pollutant exposure on acute respiratory symptoms and respiratory function in adults. Arch Environ Health 57(2):130–136

    CAS  Google Scholar 

  • Stabile L, De Luca G, Pacitto A, Morawska L, Avino P, Buonanno G (2021) Ultrafine particle emission from floor cleaning products. Indoor Air 31(1):63–73

    CAS  Google Scholar 

  • Su FC, Friesen MC, Stefaniak AB, Henneberger PK, LeBouf RF, Stanton ML, Liang X, Humann M, Virji MA (2018) Exposures to volatile organic compounds among healthcare workers: modeling the effects of cleaning tasks and product use. Ann Work Expo Health 62(7):852–870

    CAS  Google Scholar 

  • Tsai DH, Lin JS, Chan CC (2012) Office workers’ sick building syndrome and indoor carbon dioxide concentrations. J Occup Environ Hyg 9(5):345–351

    CAS  Google Scholar 

  • Tran VV, Park D, Lee YC (2020) Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int J Environ Res Public Health 17(8):2927

    Google Scholar 

  • Triche EW, Gent JF, Holford TR, Belanger K, Bracken MB, Beckett WS, Naeher L, McSharry JE, Leaderer BP (2006) Low level ozone exposure and respiratory symptoms in infants. Environ Health Perspect 114:911–916

    CAS  Google Scholar 

  • UN (United Nations) (2017) Department of Economic and Social Affairs, Population Division (2017). World Population Ageing 2017 – Highlights (ST/ESA/SER.A/397). WPA2017_Highlights.pdf (un.org). Accessed 5 Apr 2021

  • Venners SA, Wang B, Ni J, Jin Y, Yang J, Fang Z, Xu X (2001) Indoor air pollution and respiratory health in urban and rural China. Int J Occup Environ Health 7(3):173–181

    CAS  Google Scholar 

  • Walgraeve C, Demeestere K, Dewulf J, Huffel V, Langenhove HV (2011) Diffusive sampling of 25 volatile organic compounds in indoor air: uptake rate determination and application in Flemish homes for the elderly. Atmos Environ 45:5828–5836

    CAS  Google Scholar 

  • Wang S, Zhao Y, Chen G, Wang F, Aunan K, Hao J (2008) Assessment of population exposure to particulate matter pollution in Chongqing, China. Environ Pollut 153:247–256

    CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atmos Environ 42(40):9018–9040

    CAS  Google Scholar 

  • Weschler CJ (2006) Ozone’s impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ Health Perspect 114:1489–1496

    CAS  Google Scholar 

  • Wolkoff P (2017) External eye symptoms in indoor environments. Indoor Air 27:246–260

    CAS  Google Scholar 

  • Wieslander G, Norback D, Edling C (1997) Airway symptoms among house painters in relation to exposure to volatile organic compounds (VOCs) – a longitudinal study. Ann Occup Hyg 41:155–166

    CAS  Google Scholar 

  • Wichman J, Lin T, Nilsson MA-M, Bellander T (2010) PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos Environ 44:4536–4544

    Google Scholar 

  • WHO (World Health Organization) (2017) Public Health, Environmental and Social Determinants of Health (PHE). World Health Organization, Geneva

    Google Scholar 

  • WHO (World Health Organization) (2013) Review of evidence on health aspects of air pollution–REVIHAAP project. WHO Regional Office for Europe, Copenhagen. Available online at: http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report.pdf. Accessed 13 May 2021

  • WHO (World Health Organization) (2010) WHO guidelines for indoor air quality: selected pollutants. Available online at: http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.Pdf. Accessed 13 May 2021

  • WHO (World Health Organization) (1987) Air quality guidelines for Europe. World Health Organization Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (World Health Organization) (2006) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005 (Summary of risk assessment) Genova, Switzerland. Available online at: http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_. Accessed 13 May 2021

  • WHO (World Health Organization) (2021) WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. Available online at: https://apps.who.int/iris/handle/10665/345329. Accessed 24 Jan 2022

  • Yang J, Nam I, Yun H, Kim J, Oh H-J, Lee D, Jeon S-M, Yoo S-H, Sohn J-R (2015) Characteristics of indoor air quality at urban elementary schools in Seoul, Korea: assessment of effect of surrounding environments. Atmos Pollut Res 6(6):1113–1122

    Google Scholar 

  • Yoon HI, Hong YC, Cho SH, Kim H, Kim YH, Sohn JR, Kwon M, Park SH, Cho MH, Cheong HK (2010) Exposure to volatile organic compounds and loss of pulmonary function in the elderly. Eur Respir J 36(6):1270–1276

    CAS  Google Scholar 

  • Zhang JJ, Wei Y, Fang Z (2019) Ozone pollution: a major health hazard worldwide. Front Immunol 31(10):2518

    Google Scholar 

  • Zhao P, Siegel JA, Corsi RL (2007) Ozone removal by HVAC filters. Atmos Environ 41:3151–3160

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation for Science and Technology-FCT (Portuguese Ministry of Science, Technology and Higher Education) under the project UIDB/04750/2020. Joana Madureira is also supported by FCT (SFRH/BPD/115112/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Madureira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Madureira, J., Teixeira, J.P. (2022). Indoor Air Quality in Elderly Care Centers. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-16-7680-2_71

Download citation

Publish with us

Policies and ethics