Skip to main content

Measuring Particle Concentrations and Composition in Indoor Air

  • Reference work entry
  • First Online:
Handbook of Indoor Air Quality
  • 1343 Accesses

Abstract

This chapter focuses on methods to measure the mass concentrations of airborne particulate matter, its chemical composition, and the particle number concentrations and the size distributions in indoor air. Particulate matter (PM) is a complex mixture of inorganic and organic compounds with semivolatile components making accurate determinations of its properties difficult. Many of the methods are derived from measurements in the ambient air, but with the simplification that the indoor environment is protected from precipitation and generally from large variations in temperature and relative humidity. PM measurements first collected integral filters that were weighed to obtain the mass of material separated from a known volume of air to obtain the PM mass concentration typically in units of μg/m3. These samples can be subjected to separation and analysis methods to determine its chemical constituents including elements, ions, collective carbonaceous species, and individual organic compounds. Continuous PM mass measurement systems have been developed based on beta attenuation, oscillating microbalances, and light scattering. There have been major recent developments of low-cost light scattering monitors that permit the use of multiple monitors to simultaneously obtain more detailed data from multiple locations. Particle counting methods date to the late nineteenth century, but have been refined to permit detection of particles as small as 1 nm. These units can be combined with electrical mobility separation to provide particle size distributions. Particle size is important since it determines the penetration and deposition into the human respiratory and the aerosol dynamics in the indoor space. A number of studies employing these methods have been summarized to provide access to the literature to determine the details of how individual studies were conducted. Such information will help in the design of future studies of particle in indoor air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abt E, Suh HH, Catalano P, Koutrakis P (2000a) Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environ Sci Technol 34:3579–3587

    CAS  Google Scholar 

  • Abt E, Suh HH, Allen G, Koutrakis P (2000b) Characterization of indoor particle sources: a study conducted in the metropolitan Boston area. Environ Health Perspect 108(1):35–44

    CAS  Google Scholar 

  • Afshari A, Matson U, Ekberg LE (2005) Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air 15:141–150

    CAS  Google Scholar 

  • Aitken J (1888) On the number of dust particles in the atmosphere. Nature 37(957):428–430

    Google Scholar 

  • Aitken J (1892) On a simple pocket dust-counter. Proc R Soc Edinb 18:39–52

    Google Scholar 

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    CAS  Google Scholar 

  • AQ-SPEC (2016). http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purpleair%2D%2D-field-evaluation.pdf. Accessed 19 Dec 2020

  • Ardon-Dryer K, Dryer Y, Williams JN, Moghimi N (2020) Measurements of PM2.5 with PurpleAir under atmospheric conditions. Atmos Meas Tech 13:5441–5458

    CAS  Google Scholar 

  • Azimi P, Stephens B (2013) HVAC filtration for controlling infectious airborne disease transmission in indoor environments: predicting risk reductions and operational costs. Build Environ 70:150–160. https://doi.org/10.1016/j.buildenv.2013.08.025

  • Badura M, Batog P, Drzeniecka-Osiadacz A, Modzel P (2018) Evaluation of low-cost sensors for ambient PM2.5 monitoring. Sensors 2018:1–16

    Google Scholar 

  • Badura M, Batog P, Drzeniecka-Osiadacz A, Modzel P (2019) Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements. SN Appl Sci 1:622

    Google Scholar 

  • Barkjohn KK, Gantt B, Clements AL (2020) Development and application of a United States wide correction for PM2.5 data collected with the PurpleAir sensor. Atmos Meas Tech Discuss. https://doi.org/10.5194/amt-2020-413

  • Becnel T, Tingey K, Whitaker J, Sayahi T, Le K, Goffin P, Butterfield A, Kelly K, Gaillardon PE (2019) A distributed low-cost pollution monitoring platform. IEEE Internet Things J 6:10738–10748

    Google Scholar 

  • Bekö G, Kjeldsen BU, Olsen Y, Schipperijn J, Wierzbicka A, Karottki DG, … Clausen G (2015) Contribution of various microenvironments to the daily personal exposure to ultrafine particles: personal monitoring coupled with Gps tracking. Atmos Environ 110:122–129

    Google Scholar 

  • Bekö G, Weschler CJ, Wierzbicka A, Karottki DG, Toftum J, Loft S, Clausen G (2013) Ultrafine particles: exposure and source apportionment in 56 Danish homes. Environ Sci Technol 47:10240–10248

    Google Scholar 

  • Bi J, Wildani A, Chang HH, Liu Y (2020) Incorporating low-cost sensor measurements into high-resolution PM2.5 modeling at a large spatial scale. Environ Sci Technol 54:2152–2162

    CAS  Google Scholar 

  • Bi J, Wallace LA, Sarnat JA, Liu Y (2021) Characterizing outdoor infiltration and indoor contribution of PM2.5 with citizen-based low-cost monitoring data. Environ Pollut 276:116763

    CAS  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon–based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241

    CAS  Google Scholar 

  • Bond TC, Anderson TL, Campbell D (1999) Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci Technol 30:582–600

    CAS  Google Scholar 

  • Brattich E, Bracci A, Zappi A, Morozzi P, Di Sabatino S, Porcù F, Di Nicola F, Tositti L (2020) How to get the best from low-cost particulate matter sensors: guidelines and practical recommendations. Sensors 20:3073

    Google Scholar 

  • Bräuner EV, Forchhammer L, Møller P, Simonsen J, Glasius M, Wåhlin P, Raaschou-Nielsen O, Loft S (2007) Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environ Health Perspect 115:1177–1182

    Google Scholar 

  • Bräuner EV, Forchhammer L, Møller P, Barregard L, Gunnarsen L, Afshari A, Wåhlin P, Glasius M, Dragsted LO, Basu S, Raaschou-Nielsen O, Loft S (2008) Indoor particles affect vascular function in the aged: an air filtration-based intervention study. Am J Resp Crit Care Med 177:419–425

    Google Scholar 

  • Bulot FMJ, Johnston SJ, Basford PJ, Easton NHC, Apetroaie-Cristea M, Foster GL, Morris AKR, Cox SJ, Loxham M (2019) Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci Rep 9:7497

    Google Scholar 

  • Buonanno G, Marks GB, Morawska L (2013) Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects. Environ Pollut 180:246–250

    CAS  Google Scholar 

  • Buonanno G, Stabile L, Morawska L (2014) Personal exposure to ultrafine particles: the influence of time-activity patterns. Sci Total Environ 468–469:903–907

    Google Scholar 

  • Cai J, Yan B, Ross J, Zhang D, Kinney PL, Perzanowski MS, Jung K, Miller R, Chillrud SN (2014) Validation of MicroAeth® as a black carbon monitor for fixed-site measurement and optimization for personal exposure characterization. Aerosol Air Qual Res 14:1–9

    CAS  Google Scholar 

  • Cantrell BK, Stein SW, Patashnick H, Hassel D (1996) Status of a tapered element, oscillating microbalance-based continuous respirable coal mine dust monitor. Appl Occup Environ Hyg 11:624–629

    CAS  Google Scholar 

  • Cantrell BK, Williams KL, Stein SW, Hassel O, Patashnick H (1997) Continuous respirable dust monitor development. In: Proceedings of the 6th international mine ventilation congress. Society of Mining Engineers, Littleton

    Google Scholar 

  • Catrambone M, Canepari S, Cerasa M, Sargolini T, Perrino C (2019) Performance evaluation of a very-low-volume sampler for atmospheric particulate matter. Aerosol Air Qual Res 19:2160–2172

    CAS  Google Scholar 

  • Cavalli F, Viana M, Yttri KE, Genberg J, Putaud JP (2010) Toward a standardised thermal–optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos Meas Tech 3:79–89

    CAS  Google Scholar 

  • Chen D-R, Pui D, Hummes D, Fissan H, Quant FR, Sem GJ (1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J Aerosol Sci 29:497–509

    CAS  Google Scholar 

  • Chen LJ, Ho Y-H, Lee H-C, Wu H-C, Liu H-M, Hsieh H-H, Huang Y-T, Lung S-CC (2017) An open framework for participatory PM2.5 monitoring in smart cities. IEEE Access 5:14441–14454

    Google Scholar 

  • Chen M, Romay FJ, Marple VA (2018) Design and evaluation of a low flow personal cascade impactor. Aerosol Sci Technol 52:192–197

    CAS  Google Scholar 

  • Chen W, Wang P, Zhang D, Liu J, Dai X (2020) The impact of water on particle emissions from heated cooking oil. Aerosol Air Qual Res 20:533–543

    CAS  Google Scholar 

  • Cheng Y-H (2008) Comparison of the TSI model 8520 and Grimm series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry. J Occup Environ Hyg 5:157–168

    CAS  Google Scholar 

  • Chow JC, Watson JG, Chen LWA, Chang MCO, Robinson NF, Trimble D, Kohl S (2007) The IMPROVE_a temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manage Assoc 57:1014–1023

    CAS  Google Scholar 

  • Coulson J, Ellison JK (1963) A calibration of the filter-paper method of estimation of smoke. Br J Appl Phys 14:899–903

    Google Scholar 

  • Davies CN, Aylward M (1951) The photoelectric measurement of coal dust stains on filter paper. Br J Appl Phys 2:352–359

    Google Scholar 

  • Delp WW, Singer BC (2020) Wildfire smoke adjustment factors for low-cost and professional PM2.5 monitors with optical sensors. Sensors 20:3685

    Google Scholar 

  • Demokritou P, Kavouras IG, Ferguson ST, Koutrakis P (2001) Development and laboratory performance evaluation of a personal multipollutant sampler for simultaneous measurements of particulate and gaseous pollutants. Aerosol Sci Technol 35:741–752

    CAS  Google Scholar 

  • Dennekamp M, Howarth S, Dick C, Cherrie JW, Donaldson K, Seaton A (2001) Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occup Environ Med 58:511–516

    CAS  Google Scholar 

  • Diapouli E, Chaloulakou A, Spyrellis N (2007) Levels of ultrafine particles in different microenvironments – implications to children exposure. Sci Total Environ 388:128–136

    CAS  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10

    Google Scholar 

  • Donghyun Rim , Michal Green , Lance Wallace , Andrew Persily & Jung-Il Choi (2012) Evolution of Ultrafine Particle Size Distributions Following Indoor Episodic Releases: Relative Importance of Coagulation, Deposition and Ventilation, Aerosol Science and Technology, 46:5, 494-503

    Google Scholar 

  • Du Y, Wang Q, Sun Q, Zhang T, Li T, Yan B (2019) Assessment of PM2.5 monitoring using MicroPEM: a validation study in a city with elevated PM2.5 levels. Ecotoxicol Environ Safety 171:518–522

    CAS  Google Scholar 

  • Dzubay TG, Hines LE, Stevens RK (1976) Particle bounce errors in cascade impactors. Atmos Environ 19:229–234

    Google Scholar 

  • Edney EO, Kleindienst TE, Jaoui M, Levandowski M, Offenberg JH, Wang W, Claeys M (2005) Formation of 2-methyltetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the Eastern United States. Atmos Environ 39:5281–5289

    Google Scholar 

  • Fonseca J, Slezakova K, Morais S, Pereira MC (2014) Assessment of ultrafine particles in Portuguese preschools: levels and exposure doses. Indoor Air 24:618–628

    Google Scholar 

  • Falkovich AH, Rudich Y (2001) Analysis of semivolatile organic compounds in atmospheric aerosols by direct sample introduction thermal desorption GC/MS. Environ Sci Technol 35:2326–2333

    CAS  Google Scholar 

  • Feenstra B, Papapostolou V, Hasheminassab S, Zhang H, Boghossian BD, Cocker D, Polidori A (2019) Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmos Environ 216:116946

    CAS  Google Scholar 

  • Francis AS, Chee FP, Chang JHW, Sentian J, Dayou J, Payus CM (2019) Parametric model for estimation of mass concentration based on particle count distribution for ambient air monitoring. J Phys Conf Ser 1358:012042

    CAS  Google Scholar 

  • Franck U, Herbarth O, Wehner B, Wiedensohler A, Manjarrez M (2003) How do the indoor size distributions of airborne submicron and ultrafine particles in the absence of significant indoor sources depend on outdoor distributions? Indoor Air 13:174–181

    CAS  Google Scholar 

  • Fromme H, Twardella D, Dietrich S, Heitmann D, Schierl R, Liebl B, Ruden H (2007) Particulate matter in the indoor air of classrooms – exploratory results from Munich and surrounding area. Atmos Environ 41:854–866

    CAS  Google Scholar 

  • García-Hernandez C, Ferrero A, Estarlich M, Ballester F (2020) Exposure to ultrafine particles in children until 18 years of age: a systematic review. Indoor Air 30(1):7–23

    Google Scholar 

  • Gehin E, Ramalho O, Kirchner S (2008) Size distribution and emission rate measurement of fine and ultrafine particle from indoor human activities. Atmos Environ 42:8341–8352

    CAS  Google Scholar 

  • Global Burden of Disease (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1135–1159

    Google Scholar 

  • Gupta P, Doralswamy P, Levy R, Pikelnaya O, Maibach J, Feenstra B, Polidori A, Kiros F, Mills KC (2018) Impact of California fires on local and regional air quality: the role of a low-cost sensor network and satellite observations. GeoHealth 2:172–181

    CAS  Google Scholar 

  • Ritchie H, Roser M (2013) Indoor air pollution. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/indoor-air-pollution [Online Resource]

    Google Scholar 

  • Hameri K, Koponen IK, Aalto PP, Kulmala M (2002) The particle detection efficiency of the TSI–3007 condensation particle counter. J Aerosol Sci 33:1463–1469

    Google Scholar 

  • Hameri K, Hussein T, Kulmala M, Aalto P (2004) Measurements of fine and ultrafine particles in Helsinki: connection between outdoor and indoor air quality. Boreal Environ Res 9:459–467

    Google Scholar 

  • Hansen ADA, Rosen H, Novakov T (1982) Real-time measurement of the absorption coefficient of aerosol particles. Appl Opt 21:3060

    Google Scholar 

  • Hansen ADA, Rosen H, Novakov T (1984) The Aethalometer: an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ 36:191–196

    CAS  Google Scholar 

  • He M, Kuerbanjiang N, Dhaniyala S (2020) Performance characteristics of the low-cost Plantower PMS optical sensor. Aerosol Sci Technol 54(2):232–241. https://doi.org/10.1080/02786826.2019.1696015

    Article  CAS  Google Scholar 

  • HEI (2013) Understanding the health effects of ambient ultrafine particles. Report by the HEI review panel on ultrafine particles. Health Effects Institute, Boston. https://www.healtheffects.org/publication/understanding-health-effects-ambient-ultrafine-particles. Accessed 22 Jan 2021

    Google Scholar 

  • Hering SV, Stolzenburg MR, Quant FR, O’Berreit DR, Keady PB (2005) A laminar-flow, water-based condensation particle counter (WCPC). Aerosol Sci Technol 39:659–672

    CAS  Google Scholar 

  • He C, Morawska L, Hitchins J, Gilbert D (2004) Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ 38:3405–3415

    Google Scholar 

  • Hoek G, Kos G, Harrison R, de Hartog J, Meliefste K, ten Brink H, Katsouyanni K, Karakatsani A, Lianou M, Kotronarou A, Kavouras I, Pekkanen J, Vallius M, Kulmala M, Puustinen A, Thomas S, Meddings C, Ayres J, van Wijnen J, Hameri K (2008) Indoor-outdoor relationships of particle number and mass in four European cities. Atmos Environ 42:156–169

    CAS  Google Scholar 

  • Holder AL, Mebust AK, Maghran LA, McGown MR, Stewart KE, Vallano DM, Elleman RA, Baker KR (2020) Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke. Sensors 20:4796

    Google Scholar 

  • Holstius DM, Pillarisetti A, Smith KR, Seto E (2014) Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmos Meas Tech 7:1121–1131

    Google Scholar 

  • Hopke PK (2016) Review of receptor modeling methods for source apportionment. J Air Waste Manag Assoc 66:237–259

    Google Scholar 

  • Hopke PK, Ramadan Z, Paatero P, Norris GA, Landis MS, Williams RW, Lewis CW (2003) Receptor modeling of ambient and personal exposure samples: 1998 Baltimore particulate matter epidemiology-exposure study. Atmos Environ 37:3289–3302

    CAS  Google Scholar 

  • Hussein T, Glytsos T, Ondracek J, Dohanyosova P, Zdimal V, H€ameri K, Lazaridis M, Smolik J, Kulmala M (2006) Particle size characterization and emission rates during indoor activities in a house. Atmos Environ 40:4285–4307

    Google Scholar 

  • Hussein T, Hameri K, Kulmala M (2002) Long-term indoor-outdoor aerosol measurement in Helsinki, Finland. Boreal Environ Res 7:141–150

    Google Scholar 

  • Hussein T, Hämeri K, Aalto P, Asmi A, Kakko L, Kulmala M (2004) Particle size characterization and the indoor-to-outdoor relationship of atmospheric aerosols in Helsinki. Scand J Work Environ Health 30(Suppl. 2):54–62

    Google Scholar 

  • Hussein T, Korhonen H, Herrmann E, Hämeri K, Lehtinen KEJ, Kulmala M (2005) Emission rates due to indoor activities: indoor aerosol model development, evaluation, and applications. Aerosol Sci Technol 39:1111–1127

    CAS  Google Scholar 

  • Isaxon C, Gudmundsson A, Nordin EZ, Lönnblad L, Dahl A, Wieslander G, Bohgard M, Wierzbicka A (2015) Contribution of indoor-generated particles to residential exposure. Atmos Environ 106:458–466

    Google Scholar 

  • ISO (1995) Air quality-particle size fraction definitions for health-related sampling, ISO standard 7708. International Standards Organisation, Geneva

    Google Scholar 

  • Jeong CH, Evans GJ, Hopke PK, Chalupa D, Utell MJ (2006) Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada. J Air Waste Manage Assoc 56:431–443

    CAS  Google Scholar 

  • Ji X, Le Bihan O, Ramalho O, Mandin C, D’Anna B, Martinon L, Nicolas M, Bard D, Pairon JC (2010) Characterisation of particles emitted by incense burning in an experimental house. Indoor Air 20:147–158

    CAS  Google Scholar 

  • Jiang RT, Acevedo-Bolton V, Cheng KC, Klepeis NE, Ott WR, Hildemann LM (2011) Determination of response of real-time SidePak AM510 monitor to secondhand smoke, other common indoor aerosols, and outdoor aerosol. J Environ Monit 1:1695–1702

    Google Scholar 

  • Jiao W, Hagler G, Williams R, Sharpe R, Brown R, Garver D, Judge R, Caudill M, Rickard J, Davis M, Weinstock L, Zimmer-Dauphinee S, Buckley K (2016) Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos Meas Tech 9:5281–5292

    CAS  Google Scholar 

  • Kaduwela AP, Kaduwela AP, Jrade E, Brusseau M, Morris S, Morris J, Risk V (2019) Development of a low-cost air sensor package and indoor air quality monitoring in a California middle school: detection of a distant wildfire. J Air Waste Manage Assoc 69:1015–1022

    Google Scholar 

  • Kangasluoma K, Ahonen L, Attoui M, Vuollekoski H, Kulmala M, Petäjä T (2015) Sub-3 nm particle detection with commercial TSI 3772 and Airmodus A20 fine condensation particle counters. Aerosol Sci Technol 49:674–681

    CAS  Google Scholar 

  • Karagulian F, Barbiere M, Kotsev A, Spinelle L, Gerboles M, Lagler F, Redon N, Crunaire S, Borowiak A (2019) Review of the performance of low-cost sensors for air quality monitoring. Atmos 10:506

    CAS  Google Scholar 

  • Kearney J, Wallace L, MacNeill M, Xu X, Vanryswyk K, You H, Kulka R, Wheeler AJ (2011) Residential indoor and outdoor ultrafine particles in Windsor, Ontario. Atmos Environ 45:7583–7593

    CAS  Google Scholar 

  • Kearney J, Wallace L, MacNeill M, Héroux ME, Kindzierski W, Wheeler A (2014) Residential infiltration of fine and ultrafine particles in Edmonton. Atmos Environ 94:793–805

    CAS  Google Scholar 

  • Kelly KE, Whitaker J, Petty A, Widmer C, Dybwad A, Sleeth D, Martin R, Butterfield A (2017) Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ Pollut 221:491–500

    CAS  Google Scholar 

  • Kenny LC, Gussman R, Meyer M (2000) Development of a sharp- cut cyclone for ambient aerosol monitoring applications, aerosol Sci. Aerosol Sci Technol 32:338–358

    CAS  Google Scholar 

  • Kenny LC, Merrifield T, Mark D, Gussman R, Thorpe A (2004) The development and designation testing of a new USEPA-approved fine particle inlet: a study of the USEPA designation process. Aerosol Sci Technol 38(S2):15–22

    CAS  Google Scholar 

  • Khlystov A, Stanier CO, Takahama S, Pandis SN (2005) Water content of ambient aerosol during the Pittsburgh air quality study. J Geophys Res-Atmos 110(D7):715–737

    Google Scholar 

  • Kim JY, Magari SR, Herrick RF, Smith TJ, Christiani DC (2004) Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method. J Occup Environ Hyg 1:707–715

    CAS  Google Scholar 

  • Kim G-S, Son Y-S, Lee J-H, Kim I-W, Kim J-C, Oh J-T, Kim H (2016) Air pollution monitoring and control system for Subway stations using environmental sensors. J Sens 2016:1–10

    Google Scholar 

  • Kim S, Park S, Lee J (2019) Evaluation of performance of inexpensive laser based PM2.5 sensor monitors for typical indoor and outdoor hotspots of South Korea. Appl Sci 9:1947

    CAS  Google Scholar 

  • Kissell FN, Volkwein JC, Kohler J (2002) Historical perspective of personal dust sampling in coal mines. In: Proceedings of the mine ventilation conference. Balkema, Lisse, pp 619–623

    Google Scholar 

  • Klepeis NE, Tsang AM, Behar JV (1996) Analysis of the National Human Activity Pattern Survey (NHAPS) respondents from a standpoint of exposure assessment. Final EPA report, EPA/600/R96/074. EPA, Washington, DC

    Google Scholar 

  • Klepeis NE, Neilson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Englemann WH (2001) The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Exp Anal Environ Epidemiol 11:231–252

    CAS  Google Scholar 

  • Koponen IK, Asmi A, Keronen P, Puhto K, Kulmala M (2001) Indoor air measurement campaign in Helsinki, Finland 1999 e the effect of outdoor air pollution on indoor air. Atmos Environ 35:1465–1477

    CAS  Google Scholar 

  • Kuan Ken Lee, Rong Bing, Joanne Kiang, Sophia Bashir, Nicholas Spath, Dominik Stelzle, Kevin Mortimer, Anda Bularga, Dimitrios Doudesis, Shruti S Joshi, Fiona Strachan, Sophie Gumy, Heather Adair-Rohani, Engi F Attia, Michael H Chung, Mark R Miller, David E Newby, Nicholas L Mills, David A McAllister, Anoop S V Shah, Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study, The Lancet Global Health, Volume 8, Issue 11, 2020, Pages e1427-e1434, ISSN 2214-109X, https://doi.org/10.1016/S2214-109X(20)30343-0. (https://www.sciencedirect.com/science/article/pii/S2214109X20303430)

  • Kulkani P, Baron PA, Willeke K (eds) (2011) Aerosol measurement: principles, techniques, and applications, 3rd edn. Wiley. ISBN: 978-0-470-38741-2

    Google Scholar 

  • Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, Harrison RM, Norford L, Britter R (2014) Ultrafine particles in cities. Environ Int 66:1–10

    CAS  Google Scholar 

  • Kuula J, Mäkelä T, Hillamo R, Timonen H (2017) Response characterization of an inexpensive aerosol sensor. Sensors 17:2915

    Google Scholar 

  • Kuula J, Mäkelä T, Aurela M, Teinilä K, Varjonen S, González Ó, Timonen H (2020) Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmos Meas Tech 13:2413–2423

    CAS  Google Scholar 

  • Landsberger S, Creatchman M (eds) (1999) Elemental analysis of airborne particles, 1st edn. Gordon and Breach Science Publisher, Amsterdam

    Google Scholar 

  • Lane DD, Baldauf RW, Marotz GA (2001) Performance characterization of the portable miniVOL particulate matter sampler. Trans Ecol Environ 47:659–670

    Google Scholar 

  • Lawless PA, Rodes CE, Ensor DS (2004) Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon. Atmos Environ 38:3373–3383

    CAS  Google Scholar 

  • Le T-C, Shukla KK, Sung J-C, Li Z, Yeh H, Huang W, Tsai CJ (2019) Sampling efficiency of low-volume PM10 inlets with different impaction substrates. Aerosol Sci Technol 53:295–308

    CAS  Google Scholar 

  • Lee KK, Bing R, Kiang J, Bashir S, Spath N, Stelzle D, Mortimer K, Bularga A, Doudesis D, Joshi SS, Strachan F, Gumy S, Adair-Rohani H, Attia EF, Chung MH, Miller MR, Newby DE, Mills NL, McAllister DA, Shah ASV (2020) Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Global Health 8(11):e1427–e1434

    Google Scholar 

  • Leigh-Manuell D, Hopke PK, Dhaniyala S (2020) The Aitken counter: revisiting its design and performance characteristics. Aerosol Sci Technol 54:999–1006

    CAS  Google Scholar 

  • Levy Zamora M, Xiong F, Gentner D, Kerkez B, Kohrman-Glaser J, Koehler K (2018) Field and laboratory evaluations of the low-cost Plantower particulate matter sensor. Environ Sci Technol 53:838–849

    Google Scholar 

  • Levy JI, Dumyahn T, Spengler JD (2002) Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. J Expo Anal Environ Epidemiol 12:104–114

    CAS  Google Scholar 

  • Li W, Hopke PK (1993) Initial size distribution and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci Technol 19:305–316

    CAS  Google Scholar 

  • Li ZY, Che W, Lau AK, Fung JC, Lin C, Lu X (2019) A feasible experimental framework for field calibration of portable light-scattering aerosol monitors: case of TSI DustTrak. Environ Pollut 255:113136

    CAS  Google Scholar 

  • Li JY, Mattewal SK, Patel S, Biswas P (2020) Evaluation of nine low-cost-sensor-based particulate matter monitors. Aerosol Air Qual Res 20:254–270

    CAS  Google Scholar 

  • Litton CD (2002a) The use of light scattering and ion chamber responses for the detection of fires in diesel contaminated atmospheres. Fire Safety J 37:409–425

    CAS  Google Scholar 

  • Litton CD (2002b) Studies of the measurement of respirable coal dusts and diesel particulate matter. Meas Sci Technol 13:365–374

    CAS  Google Scholar 

  • Litton CD, Smith KR, Edwards R, Allen T (2004) Combined optical and ionization measurement techniques for inexpensive characterization of micrometer and submicrometer aerosols. Aerosol Sci Technol 38:1054–1062

    CAS  Google Scholar 

  • Long CM, Suh HH, Catalano P, Koutrakis P (2001) Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ Sci Tech 35:2089–2099

    Google Scholar 

  • Magi BI, Cupini C, Francis J, Green M, Hauser C (2020) Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method. Beta attenuation monitor. Aerosol Sci Technol 54:147–159

    CAS  Google Scholar 

  • Malings C, Tanzer R, Hauryliuk A, Saha PK, Robinson AL, Presto AA, Subramanian R (2020) Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation. Aerosol Sci Technol 54:160–174

    CAS  Google Scholar 

  • Manikonda A, Zikova N, Hopke PK, Ferro AR (2016) Laboratory assessment of low-cost PM monitors. J Aerosol Sci 102:29–40

    CAS  Google Scholar 

  • Marple V, Rubow KL, Turner W, Spengler J (1987) Low flow rate sharp cut impactors for indoor air sampling: design and calibration. J Air & Waste Manage Assoc 37:1303–1307

    Google Scholar 

  • Masic A, Bibic D, Pikula B, Dzaferovic-Masic E, Musemic R (2019) Experimental study of temperature inversions above urban area using unmanned aerial vehicle. Therm Sci 23:3327–3338

    Google Scholar 

  • Masic A, Bibic D, Pikula B, Blazevic A, Huremovic J, Zero S (2020) Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution. Atmos Meas Tech 13:6427–6443

    Google Scholar 

  • Matson U (2005) Comparison of the modelling and the experimental results on concentrations of ultra-fine particles indoors. Build Environ 40:996–1002

    Google Scholar 

  • McMurry PH (2000) The history of condensation nucleus counters. Aerosol Sci Technol 33:297–322

    CAS  Google Scholar 

  • Meng QY, Turpin BJ, Korn L, Weisel CP, Morandi M, Colome S, Zhang JFJ, Stock T, Spektor D, Winer A, Zhang L, Lee JH, Giovanetti R, Cui W, Kwon J, Alimokhtari S, Shendell D, Jones J, Farrar C, Maberti S (2005) Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. J Exp Anal Environ Epidemiol 15:17–28

    CAS  Google Scholar 

  • Meier R, Eeftens M, Phuleria HC, Ineichen A, Corradi E, Davey M, Fierz M, Ducret-Stich RE, Aguilera I, Schindler C, Rochat T, Probst-Hensch N, Tsai MY, Künzli N (2015) Differences in indoor versus outdoor concentrations of ultrafine particles, PM2.5, PMabsorbance and NO2 in Swiss homes. J Expo Sci Environ Epidemiol 25(5):499–505

    Google Scholar 

  • Misra C, Singh M, Shen S, Hall PM, Sioutas C (2002) Development and evaluation of a personal cascade impactor sampler (PCIS). J Aerosol Sci 33:1027–1047

    CAS  Google Scholar 

  • Morawska L, He C, Hitchins J, Gilbert D, Parappukkaran S (2001) The relationship between indoor and outdoor airborne particles in the residential environment. Atmos Environ 35:3463–3473

    CAS  Google Scholar 

  • Morawska L, Thai PK, Liu X, Asumadu-Sakyi A, Ayoko G, Bartonova A, Bedini A, Chai F, Christensen B, Dunbabin M, Gao J, Hagler GSW, Jayaratne R, Kumar P, Lau AKH, Louie PKK, Mazaheri M, Ning Z, Motta N, Mullins B, Rahman MM, Ristovski Z, Shafiei M, Tjondronegoro D, Westerdahl D, Williams R (2018) Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: how far have they gone? Environ Int 116:286–299

    CAS  Google Scholar 

  • Mitsakou C, Housiadas C, Eleftheriadis K, Vratolis S, Helmis C, Asimakopoulos D (2007) Lung deposition of fine and ultrafine particles outdoors and indoors during a cooking event and a no activity period. Indoor Air 17(2):143–152

    Google Scholar 

  • Murr LE, Soto KF, Garza KM, Guerrero PA, Martinez F, Esquivel EV, Ramirez DA, Shi Y, Bang JJ, Venzor J 3rd. (2006) Combustion-generated nanoparticulates in the El Paso, TX, USA/Juarez, Mexico Metroplex: their comparative characterization and potential for adverse health effects. Int J Environ Res Public Health 3(1):48–66

    CAS  Google Scholar 

  • Nguyen C, Li L, Sen CA, Ronquillo E, Zhu Y (2019) Fine and ultrafine particles concentrations in vape shops. Atmos Environ 211:159–169

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Google Scholar 

  • Ogulei D, Hopke PK, Wallace LA (2006) Analysis of indoor particle size distributions from an occupied townhouse using positive matrix factorization. Indoor Air 16:204–215

    CAS  Google Scholar 

  • Ohlwein S, Kappeler R, Kutlar Joss M et al (2019) Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health 64:547–559. https://doi.org/10.1007/s00038-019-01202-7

  • Ott WR, Zhao T, Cheng K-C, Wallace LA, Hildemann LM (2021) Measuring indoor fine particle concentrations, emission rates, and decay rates from cannabis use in a residence. Atmos Environ 10:100106. https://doi.org/10.1016/j.aeaoa.2021.100106

  • Ohlwein S, Kappeler R, Jos MJ, Kűnzli N, Hoffmann B (2019) Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health 64:547–559

    Google Scholar 

  • Özkaynak H, Xue J, Spengler JD, Wallace LA, Pellizzari ED, Jenkins P (1996) Personal exposure to airborne particles and metals: results from the particle TEAM study in Riverside, CA. J Expo Anal Environ Epidemol 6:57–78

    Google Scholar 

  • Patel S, Sankhyan S, Boedicker EK, DeCarlo PF, Farmer DK, Goldstein AH, Katz EF, Nazaroff WW, Tian Y, Vanhanen J, Vance ME (2020) Indoor particulate matter during HOMEChem: concentrations, size distributions, and exposures. Environ Sci Technol 54:7107–7116

    CAS  Google Scholar 

  • Pashynska V, Vermeylen R, Vas G, Maenhaut W, Claeys M (2002) Development of a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and saccharidic compounds in atmospheric aerosols. Application to urban aerosols. J Mass Spectrom 37:1249–1257

    Google Scholar 

  • Querol X, Alastuey A, Lopez-Soler A, Mantilla E, Plana F (1996) Mineralogy of atmospheric particulates around a large coal-fired power station. Atmos Environ 30:3557–3572

    CAS  Google Scholar 

  • Rim D, Wallace L, Nabinger S, Persily A. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position. Sci Total Environ. 2012 Aug 15;432:350-6.

    Google Scholar 

  • Rim D, Green M, Wallace L, Persily A, Choi JI (2012a) Evolution of ultrafine particle size distributions following indoor episodic releases: relative importance of coagulation, deposition and ventilation. Aerosol Sci Technol 46(5):494–503

    Google Scholar 

  • Rim D, Wallace L, Nabinger S, Persily A (2012b) Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position. Sci Total Environ 15(432):350–356

    Google Scholar 

  • Rim D, Wallace LA, Persily AK (2013) Indoor ultrafine particles of outdoor origin: importance of window opening area and fan operation condition. Environ Sci Technol 47:1922–1929

    CAS  Google Scholar 

  • Rivas I, Mazaheri M, Viana M, Moreno T, Clifford S, He C, Bischof OF, Martins V, Reche C, Alastuey A, Alvarez-Pedrerol M, Sunyer J, Morawska L, Querol X (2017) Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Sci Total Environ 584–585:849–855

    Google Scholar 

  • Rundell KW (2003) High levels of airborne ultrafine and fine particulate matter in indoor ice arenas. Inhal Tox 15:237–250

    CAS  Google Scholar 

  • Salako GO, Hopke PK, Cohen DD, Begum BA, Biswas SK, Pandit GG, Chung YS, Rahman SA, Hamzah MS, Davy P, Markwitz A, Shagjjamba D, Lodoysamba S, Wimolwattanapun W, Bunprapob S (2012) Exploring the variation between EC and BC in a variety of locations exploring the variation between EC and BC in a variety of locations. Aerosol Air Qual Res 12:1–7

    CAS  Google Scholar 

  • Sandradewi J, Prévôt AS, Szidat S, Perron N, Alfarra MR, Lanz VA, Weingartner E, Baltensperger U (2008) Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ Sci Technol 42:3316–3323

    CAS  Google Scholar 

  • Sarnat JA, Long CM, Koutrakis P, Coull BA, Schwartz J, Suh HH (2002) Using Sulfur as a tracer of outdoor fine particulate matter. Environ Sci Technol 36:5305–5314

    CAS  Google Scholar 

  • Sayahi T, Kaufman D, Becnel TK, K, Butterfield AE, Collingwood S, Zhang, Y Gaillardon P-E, Kelly, KE. (2019a) Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environ Pollut 255:113131

    CAS  Google Scholar 

  • Sayahi T, Butterfield A, Kelly KE (2019b) Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ Poll 245:932–940

    CAS  Google Scholar 

  • Schnaiter M, Horvath H, Möhlter O, Naumann K-H, Saafhoff H, Schöck OW (2003) UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J Aerosol Sci 34:1421–1444

    CAS  Google Scholar 

  • Schnaiter M, Linke C, Möhler O, Naumann K-H, Saathoff H, Wagner R, Schurath U (2005) Absorption amplification of black carbon internally mixed with secondary organic aerosols. J Geophys Res 110:D19204

    Google Scholar 

  • Schweizer D, Cisneros R, Shaw G (2016) A comparative analysis of temporary and permanent beta attenuation monitors: the importance of understanding data and equipment limitations when creating PM2.5 air quality health advisories. Atmos Pollut Res 7:865–875

    Google Scholar 

  • See SW, Balasubramanian R (2006) Physical characterisitics of ultrafine particles emitted from different gas cooking methods. Aerosol Air Qual Res 6:82–96

    Google Scholar 

  • Sheesley RJ, Mark M, Jeff T, De M, Brandon R, Shelton JJS (2015) Development of an in situ derivatization technique for rapid analysis of levoglucosan and polar compounds in atmospheric organic aerosol. Atmos Environ 123:251–255

    CAS  Google Scholar 

  • Slezakova K, de Oliveira Fernandes E, Pereira M do C (2019) Assessment of ultrafine particles in primary schools: emphasis on different indoor microenvironments. Environ Pollut 246:885–895

    Google Scholar 

  • Slezakova K, Peixoto C, Oliveira M, Delerue-Matos C, Pereira MDC, Morais S (2018) Indoor particulate pollution in fitness centres with emphasis on ultrafine particles. Environ Pollut 233:180–193

    Google Scholar 

  • Si M, Xiong Y, Du S, Du K (2020) Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods. Atmos Meas Tech 13:1693–1707

    CAS  Google Scholar 

  • Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182

    CAS  Google Scholar 

  • Singer BC, Delp WW (2018) Response of consumer and research grade indoor air quality monitors to residential sources of fine particles. Indoor Air 28:624–639

    CAS  Google Scholar 

  • Singer BC, Pass RZ, Delp WW, Lorenzetti DM, Maddalena RL (2017) Pollutant concentrations and emission rates from natural gas cooking burners without and with range hood exhaust in nine California homes. Build Environ 122:215–229

    Google Scholar 

  • Singh M, Misra C, Sioutas C (2003) Field evaluation of a personal cascade impactor sampler (PCIS). Atmos Environ 37:4781–4793

    CAS  Google Scholar 

  • Smczak W, Menzel N, Keck L (2007) Emission of ultrafine copper particles by universal motors controlled by phase angle. J Aerosol Sci 38:520–531

    Google Scholar 

  • Smith KR, Dutta K, Chengappa C, Gusain PPS, Masera O, Berrueta V, Edwards R, Bailis R, Naumoff Shields K (2007) Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: conclusions from the Household Energy and Health Project. Energy Sustain Dev XI:5–18

    Google Scholar 

  • Solomon PA, Crumpler D, Flanagan JB, Jayanty RKM, Rickman EE, McDade CE (2014) US national PM2.5 chemical speciation monitoring networks – CSN and IMPROVE: description of networks. J Air Waste Manag Assoc 64:1410–1438

    CAS  Google Scholar 

  • Soppa VJ, Schins RPF, Hennig F, Nieuwenhuijsen MJ, Hellack B, Quass U, Kaminski H, Sasse B, Shinnawi S, Kuhlbusch TAJ, Hoffmann B (2017) Arterial blood pressure responses to short-term exposure to fine and ultrafine particles from indoor sources – a randomized sham-controlled exposure study of healthy volunteers. Environ Res 158:225–232

    Google Scholar 

  • Spilak MP, Frederiksen M, Kolarik B, Gunnarsen L (2014) Exposure to ultrafine particles in relation to indoor events and dwelling characteristics. Build Environ 74:65–74

    Google Scholar 

  • Stieb DM, Burnett RT, Smith-Doiron M, Brion O, Hyun Shin H, Economou V (2008) A new multipollutant, no-threshold air quality health index based on short-term associations observed in daily time-series analyses. J Air Waste Manag Assoc 58(3):435–450. https://doi.org/10.3155/1047-3289.58.3.435

  • Stavroulas I, Grivas G, Michalopoulos P, Liakakou E, Bougiatioti A, Kalkavouras P, Fameli KM, Hatzianastassioui N, Mihalopoulos N, Gerasopoulos D (2020) Field evaluation of low-cost PM sensors (purple air PA-II) under variable urban air quality conditions in Greece. Atmos 11:926

    CAS  Google Scholar 

  • Stölzel M, Breitner S, Cyrys J, Pitz M, Wölke G, Kreyling W, Heinrich J, Wichmann HE, Peters A (2007) Daily mortality and particulate matter in different size classes in Erfurt Germany. J Expo Sci Environ Epi 17:458–467

    Google Scholar 

  • Sultan ZM, Nilsson GJ, Magee RJ (2011) Removal of ultrafine particles in indoor air: performance of various portable air cleaner technologies. HVAC&R Res 17:513–525

    Google Scholar 

  • Sunder Raman R, Hopke PK (2006) An ion chromatographic analysis of water-soluble, short-chain organic acids in ambient particulate matter. Int J Environ Anal Chem 86:767–777

    Google Scholar 

  • Susz A, Pratte P, Goujon-Ginglinger C (2020) Real-time monitoring of suspended particulate matter in indoor air: validation and application of a light-scattering sensor. Aerosol Air Qual Res 20:2384–2395

    CAS  Google Scholar 

  • Tryner J, Quinn C, Windom BC, Volckens J (2019a) Design and evaluation of a portable PM2.5 monitor featuring a low-cost sensor in line with an active filter sampler. Environ Sci Process Impacts 21:1403–1415

    CAS  Google Scholar 

  • Tryner J, Good N, Wilson A, Clark ML, Peel JL, Volckens J (2019b) Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM2.5. Environ Pollut 250:251–261

    CAS  Google Scholar 

  • Tryner J, L’Orange C, Mehaffy J, Miller-Lionberg D, Hofstetter JC, Wilson A, Volckens J (2020) Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos Environ 220:117067

    CAS  Google Scholar 

  • Turner WA, Olson BA, Allen GA (2000) Calibration of sharp cut impactors for indoor and outdoor particle sampling. J Air Waste Manag Assoc 50:484–487

    CAS  Google Scholar 

  • USEPA (2004) Air quality criteria for particulate matter, report no. EPA/600/P-99/002aF. Available from https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=87903

  • USEPA (2017) How to use air sensors: air sensor guidebook. Available from https://www.epa.gov/air-sensor-toolbox/how-use-air-sensors-air-sensor-guidebook

  • Utell MJ, Frampton MW (2000) Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J Aerosol Med 13:355–359

    CAS  Google Scholar 

  • Valente P, Forastiere F, Bacosi A, Cattani G, Di Carlo S, Ferri M, Figa-Talamanca I, Marconi A, Paoletti L, Perucci C, Zuccaro P (2007) Exposure to fine and ultrafine particles from secondhand smoke in public places before and after the smoking ban, Italy 2005. Tob Control 16:312–317

    Google Scholar 

  • Wallace, L. A. (2000). Real-Time Monitoring of Particles, PAH, and CO in An Occupied Townhouse, Applied Occup. Environ. Hygiene 15(1):39–47.

    Google Scholar 

  • Wallace LA (2005) Ultrafine particles from a vented gas clothes dryer. Atmos Environ 39:5777–5786

    CAS  Google Scholar 

  • Wallace LA (2009) Ultrafine particles: a review. Prepared for Environment Canada. https://www.researchgate.net/publication/236004182_Ultrafine_Particles_A_Review. Accessed 22 Jan 2021

  • Wallace LA, Ott WR (2010) Personal exposure to ultrafine particles. J Expos Sci Environ Epidemiol 21:20–30

    Google Scholar 

  • Wallace LA, Emmerich SJ, Howard-Reed C (2004) Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ Sci Technol 38:2304–2311

    Google Scholar 

  • Wallace LA, Wang F, Howard-Reed C, Persily A (2008) Contribution of gas and electric stoves to residential ultrafine particle concentrations between 2 and 64 nm: size distributions and emission and coagulation rates. Environ Sci Technol 42:8641–8647

    CAS  Google Scholar 

  • Wallace LA, Wheeler AJ, Kearney J, Van Ryswyk K, You H, Kulka RH, Rasmussen PE, Brook JR, Xu X (2011) Validation of continuous particle monitors for personal, indoor and outdoor exposures. J Expo Anal Environ Epidemiol 21:49–64

    CAS  Google Scholar 

  • Wallace LA, Ott WR, Weschler CJ (2015) Ultrafine particles from electric appliances and cooking pans: experiments suggesting desorption/nucleation of sorbed organics as the primary source. Indoor Air 25:536–546

    CAS  Google Scholar 

  • Wallace LA, Ott WR, Weschler CJ, Lai ACK (2017) Desorption of SVOCs from heated surfaces in the form of ultrafine particles. Environ Sci Technol 51(3):1140–1146

    CAS  Google Scholar 

  • Wallace L, Jeong S-G, Rim D (2019) Dynamic behavior of indoor ultrafine particles (2.3–64 nm) due to burning candles in a residence. Indoor Air 29:1018–1027

    CAS  Google Scholar 

  • Wallace LA, Ott WR, Zhao T, Cheng K-C, Hildemann L (2020) Secondhand exposure from vaping marijuana: concentrations, emissions, and exposures determined using both research-grade and low-cost monitors. Atmos Environ X 8:100093

    CAS  Google Scholar 

  • Wallace L, Bi J, Ott WR, Sarnat JA, Liu Y (2021) Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5. Atmos Environ 256:118432. https://doi.org/10.1016/j.atmosenviron.2021.118432

    Article  CAS  Google Scholar 

  • Wallace L, Emmerich S, Howard-Reed C (2004) Effect of central fans and in-duct filters on deposition rates of ultrafine and fine particles in an occupied townhouse. Atmos Environ 38:405–413

    Google Scholar 

  • Wallace L, Williams R, Rea A, Croghan C (2006) Continuous weeklong measurements of personal exposures and indoor concentrations of fine particles for 37 health-impaired North Carolina residents for up to four seasons. Atmos Environ 40:399–414

    Google Scholar 

  • Wang Y, Hopke PK, Rattigan OV, Xia X (2011) Characterization of residential wood combustion particles using the two-wavelength aethalometer. Environ Sci Technol 45:7387–7393

    CAS  Google Scholar 

  • Wang Y, Hopke PK, Rattigan OV, Chalupa DC, Utell MJ (2012) Multiple-year black carbon measurements and source apportionment using Delta-C in Rochester, New York. J Air Waste Manag Assoc 62:880–887

    CAS  Google Scholar 

  • Wang Z, Calderón L, Patton AP, Sorensen Allacci MA, Senick J, Wener R, Andrews CJ, Mainelis G (2016) Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building. J Air Waste Manage Assoc 66:1109–1120

    CAS  Google Scholar 

  • Wang K, Chen FE, Au W, Zhao Z, Xia Z-L (2019) Evaluating the feasibility of a personal particle exposure monitor in outdoor and indoor microenvironments in Shanghai, China. Int J Environ Health Res 29:209–220

    Google Scholar 

  • Wang Z, Delp WW, Singer BC (2020) Performance of low-cost indoor air quality monitors for PM2.5 and PM10 from residential sources. Build Environ 171:106654

    Google Scholar 

  • Weichenthal S, Dufresne A, Infante-Rivard C, Joseph L (2007) Indoor ultrafine particle exposures and home heating systems: a cross-sectional survey of Canadian homes during the winter months. J Expo Sci Environ Epidemiol 17:288–297

    CAS  Google Scholar 

  • Weichenthal S, Dufresne A, Infante-Rivard C, Joseph L (2008) Characterizing and predicting ultrafine particle counts in Canadian classrooms during the winter months: model development and evaluation. Environ Res 106:349–360

    CAS  Google Scholar 

  • Wensing M, Schripp T, Uhdea E, Salthammer T (2008) Ultra-fine particles release from hardcopy devices: sources, real-room measurements and efficiency of filter accessories. Sci Tot Environ 407:418–427

    CAS  Google Scholar 

  • Weschler CJ, Carslaw N (2018) Indoor chemistry. Environ Sci Technol 52(5):2419–2428

    Google Scholar 

  • Wheeler A, Wallace LA, Kearney J, Van Ryswyk K, You H, Kulka R (2011) Personal, indoor, and outdoor concentrations of fine and ultrafine particles using continuous monitors in multiple residences. Aerosol Sci Technol 45:1078–1089

    CAS  Google Scholar 

  • Wichmann HE, Spix C, Tuch T, Wolke G, Peters A, Heinrich J, Kreyling WG, Heyder J (2000) Daily mortality and fine and ultrafine particles in Erfurt Germany part I: role of particle number and particle mass. Res Rep Health Eff Inst 98:5–86. discussion 87–94

    Google Scholar 

  • Williams R, Kaufman A, Hanley T, Rice J, Garvey S (2014) Evaluation of field-deployed low cost pm sensors. EPA/600/R-14/464 (NTIS PB 2015-102104). U.S. Environmental Protection Agency, Washington, DC. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=297517

  • Yakovleva E, Hopke PK, Wallace LA (1999) Receptor Modeling assessment of particle Total exposure assessment methodology data. Environ Sci Technol 33:3645–3652

    CAS  Google Scholar 

  • Zauli Sajani S, Ricciardelli I, Trentini A, Bacco D, Maccone C, Castellazzi S, Lauriola P, Poluzzi V, Harrison RM (2015) Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components. Atmos Environ 103:307–320

    Google Scholar 

  • Zhao W, Hopke PK, Norris G, Williams R, Paatero P (2006) Source apportionment and analysis on ambient and personal exposure samples with a combined receptor model and an adaptive blank estimation strategy. Atmos Environ 40:3788–3801

    CAS  Google Scholar 

  • Zhao W, Hopke PK, Gelfand EW, Rabinovitch N (2007) Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma. Atmos Environ 41:4084–4096

    CAS  Google Scholar 

  • Zhao T, Cheng K-C, Ott WR, Wallace LA, Hildemann LM (2020) Characteristics of secondhand cannabis smoke from common smoking methods: calibration factor, emission rate, and particle removal rate. Atmos Environ 242:117731

    CAS  Google Scholar 

  • Zhang Q, Zhu Y (2012) Characterizing ultrafine particles and other air pollutants at five schools in South Texas. Indoor Air 22(1):33–42

    Google Scholar 

  • Zheng T, Bergin MH, Johnson KK, Tripathi SN, Shirodkar S, Landis MS, Sutaria R, Carlson DE (2018) Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos Meas Technol 11:4823–4846

    CAS  Google Scholar 

  • Zhu Y, Hinds WC, Krudysz M, Kuhn T, Froines J, Sioutas C (2005) Penetration of freeway ultrafine particles into indoor environments. J Aerosol Sci 36(3):303–322

    Google Scholar 

  • Zhu Y, Smith TJ, Davis ME, Levy JI, Herrick R, Jiang H (2011) Comparing gravimetric and real-time sampling of PM(2.5) concentrations inside truck cabins. J Occup Environ Hyg 8:662–672

    CAS  Google Scholar 

  • Zou Y, Young M, Chen J, Liu J, May A, Clark JD (2020) Examining the functional range of commercially available low-cost airborne particle sensors and consequences for monitoring of indoor air quality in residences. Indoor Air 30:213–234

    Google Scholar 

  • Zou Y, Clark JD, May AA (2021) A systematic investigation on the effects of temperature and relative humidity on the performance of eight low-cost particle sensors and devices. J Aerosol Sci 152:105715

    CAS  Google Scholar 

  • Zusman M, Schumacher CS, Gassett AJ, Spalt EW, Austin E, Larson TV, Arvlin GC, Seto E, Kaufman JD, Sheppard L (2020) Calibration of low-cost particulate matter sensors: model development for a multi-city epidemiological study. Environ Int 134:105329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip K. Hopke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wallace, L., Hopke, P.K. (2022). Measuring Particle Concentrations and Composition in Indoor Air. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-16-7680-2_19

Download citation

Publish with us

Policies and ethics