Skip to main content

Resuspension

  • Reference work entry
  • First Online:
Handbook of Indoor Air Quality
  • 1316 Accesses

Abstract

Resuspension is an important source of indoor airborne particulate matter in occupied environments. Resuspension of settled particles from flooring, furnishings, clothing, and other surfaces can occur when the settled particles are disturbed via human activity, air currents, or other external forces. Resuspension models have been developed at multiple scales, from describing individual particle adhesion and detachment to estimating bulk effects from settled dust disturbance. Researchers have investigated the effects of many resuspension factors, including particle size, particle composition and morphology, particle loading on surfaces, surface roughness, relative humidity, flooring type, walking style, and shoe type. Future work should address a better characterization of resuspension from clothing, improved incorporation of relative humidity and electrostatic effects into resuspension models, composition of size-resolved dust loading in various microenvironments, resuspension-related exposure in microenvironments of concern, such as hospitals and schools, and resuspension of specific dust components of concern such as nanoparticles, viruses, and per- and polyfluoroalkyl substances (PFAS) compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adgate JL, Weisel C, Wang Y, Rhoads GG, Lioy PJ (1995) Lead in house dust: relationships between exposure metrics. Environ Res 70:134–147. https://doi.org/10.1006/enrs.1995.1058, ISSN 0013-9351

    Article  CAS  Google Scholar 

  • Benabed A, Limam K, Janssens B, Bosschaerts W (2019) Human foot tapping-induced particle resuspension in indoor environments: flooring hardness effect. Indoor Built Environ 29:230–239

    Article  Google Scholar 

  • Benabed A, Boulbair A, Limam K (2020) Experimental study of the human walking-induced fine and ultrafine particle resuspension in a test chamber. Build Environ 171:106655. https://doi.org/10.1016/j.buildenv.2020.106655, ISSN 0360-1323

    Article  Google Scholar 

  • Bhangar RI, Adams W, Pasut JA, Huffman EA, Arens JW, Taylor TD, Bruns WWN (2016) Chamber bioaerosol study: human emissions of size-resolved fluorescent biological aerosol particles. Indoor Air 26(2):193–206

    Article  CAS  Google Scholar 

  • Boor BE, Spilak MP, Corsi RL, Novoselac A (2015) Characterizing particle resuspension from mattresses: chamber study. Indoor Air 25:441–456

    Article  CAS  Google Scholar 

  • Boor BE, Siegel JA, Atila N (2013) Monolayer and multilayer particle deposits on hard surfaces: literature review and implications for particle resuspension in the indoor environment. Aerosol Sci Technol 47(8):831–847. https://doi.org/10.1080/02786826.2013.794928

  • Bramwell L, Qian J, Howard-Reed C, Mondal S, Ferro AR (2015) An evaluation of the impact of flooring types on exposures to fine and coarse particles within the residential micro-environment using CONTAM. J Exposure Sci Environ Epidemiol 26:86–94. https://doi.org/10.1038/jes.2015.31

  • Crawford C, Reponen T, Lee T, Iossifova Y, Levin L, Adhikari A, Grinshpun SA (2009) Temporal and spatial variation of indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-D-glucan. Aerobiologia 25:147–158

    Article  Google Scholar 

  • DeLuca NM, Angrish M, Wilkins A, Thayer K, Cohen Hubal EA (2021) Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: a systematic review protocol. Environ Int 146:106308

    Article  CAS  Google Scholar 

  • Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326

    Article  CAS  Google Scholar 

  • Dodson RE, Perovich LJ, Covaci A, Van den Eede N, Ionas AC, Dirtu AC, Brody JG, Rudel RA (2012) After the PBDE phase-out: a broad suite of flame retardants in repeat house dust samples from California. Environ Sci Technol 46:13056–13066

    Article  CAS  Google Scholar 

  • Ferro AR, Kopperud RJ, Hildemann LM (2004) Source strengths for indoor human activities that resuspend particulate matter. Environ Sci Technol 38:1759–1764

    Article  CAS  Google Scholar 

  • Goldasteh I, Ahmadi G, Ferro AR (2013) Wind tunnel study and numerical simulation of dust particle resuspension from indoor surfaces in turbulent flows. J Adhes Sci Technol 27(14):1563–1579. https://doi.org/10.1080/01694243.2012.747729

  • Gomes C, Freihaut J, Bahnfleth W (2007) Resuspension of allergen-containing particles under mechanical and aerodynamic disturbances from human walking. Atmos Environ 41(2007):5257–5270. https://doi.org/10.1016/j.atmosenv.2006.07.061

    Article  CAS  Google Scholar 

  • Haines SR, Adams RI, Boor BE, Bruton T, Downey J, Ferro AR, Gall E, Green BJ, Hegarty B, Horner E, Jacobs D, Lemieux P, Misztal PK, Morrison G, Perzanowski M, Reponen T, Rush R, Virgo T, Alkhayri C, Bope A, Cochran S, Cox J, Donohue A, May AA, Nastasi N, Nishioka M, Renninger N, Tian Y, Uebel-Niemeier C, Wilkinson D, Wu T, Zambrana J, Dannemiller KC (2020) Ten questions concerning the implications of carpet on indoor chemistry and microbiology. Build Environ 170:106589. https://doi.org/10.1016/j.buildenv.2019.106589

    Article  Google Scholar 

  • Hertz H (1896) On the contact of rigid elastic solids. In: Miscellaneous papers. Jones and Schott, London

    Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd Edition. Wiley

    Google Scholar 

  • Hospodsky D, Yamamoto N, Nazaroff WW, Miller D, Gorthala S, Peccia J (2015) Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air 25:641–652

    Article  CAS  Google Scholar 

  • Hyytiäinen HK, Jayaprakash B, Kirjavainen PV, Saari SE, Holopainen R, Keskinen J, Hämeri K, Hyvärinen A, Boor BB, Täubel M (2018) Crawling-induced floor dust resuspension affects the microbiota of the infant breathing zone. Microbiome 6:25. https://doi.org/10.1186/s40168-018-0405-8

    Article  Google Scholar 

  • Iman Goldasteh, Goodarz Ahmadi & Andrea R. Ferro (2013) Wind tunnel study and numerical simulation of dust particle resuspension from indoor surfaces in turbulent flows, Journal of Adhesion Science and Technology, 27:14, 1563–1579. https://doi.org/10.1080/01694243.2012.747729

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc A Math Phys Eng Sci. 324:301–313

    CAS  Google Scholar 

  • Klepeis NE (1999) Validity of the uniform mixing assumption: determining human exposure to environmental tobacco smoke. Environ Health Perspect 107:357–363

    Google Scholar 

  • Kopperud RJ, Ferro AR, Hildemann LM (2004) Outdoor versus indoor contributions to indoor particulate matter (PM) determined by mass balance methods. J Air Waste Manage Assoc 54:1188–1196

    Article  Google Scholar 

  • Lai ACK, Tian Y, Tsoi JYL, Ferro AR (2017) Experimental study of the effect of shoes on particle resuspension from indoor flooring materials. Build Environ 118:251–258. https://doi.org/10.1016/j.buildenv.2017.02.024

    Article  Google Scholar 

  • Lewis RG, Fortune CR, Willis RD, Camann DE, Antley JT (1999) Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size. Environ Health Perspect 107:721–726

    Article  CAS  Google Scholar 

  • Licina D, Tian Y, Nazaroff WW (2017) Emission rates and the personal cloud effect associated with particle release from the perihuman environment. Indoor Air 27. https://doi.org/10.1111/ina.12365

  • Licina D, Morrison GC, Bekö G, Weschler CJ, Nazaroff WW (2019) Clothing-mediated exposures to chemicals and particles. Environ Sci Technol 53:5559–5575. https://doi.org/10.1021/acs.est.9b00272

    Article  CAS  Google Scholar 

  • Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, Sun L, Duan Y, Cai J, Westerdahl D, Liu X, Xu K, Ho K-f, Kan H, Fu Q, Lan K (2020) Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582:557–560

    Article  CAS  Google Scholar 

  • Mage DT, Ott WR (1996) Accounting for nonuniform mixing and human exposure in indoor environments. In: Tichenor BA (ed) Characterizing sources of indoor air pollution and related sink effects, ASTM STP 1287. American Society for Testing and Materials, pp 263–278. https://www.astm.org/stp1287-eb.html

  • McDonagh A, Byrne MA (2014) The influence of human physical activity and contaminated clothing type on particle resuspension. J Environ Radioact 127:119e126

    Article  Google Scholar 

  • Morales-McDevitt ME, Becanova J, Blum A, Bruton TA, Vojta S, Woodward M, Lohmann R (2021) The air that we breathe: neutral and volatile PFAS in indoor air. Environ Sci Technol Lett. https://doi.org/10.1021/acs.estlett.1c00481

  • Nasr B, Ahmadi G, Ferro AR, Dhaniyala S (2019) Overview of mechanistic particle resuspension models: comparison with compilation of experimental data. Adhes Sci Technol 33:2631–2660. https://doi.org/10.1080/01694243.2019.1650989

    Article  CAS  Google Scholar 

  • Nazaroff WW (2008) Inhalation intake fraction of pollutants from episodic indoor emissions. Build Environ 43:269–277

    Article  Google Scholar 

  • Ong K-H, Lewis RD, Dixit A, MacDonald M, Yang M, Qian Z (2014) Inactivation of dust mites, dust mite allergen, and mold from carpet. J Occup Environ Hyg 11:519–527

    Article  CAS  Google Scholar 

  • Qian J, Ferro AR (2008) Resuspension of dust particles in a chamber and associated environmental factors. Aerosol Sci Technol 42:566–578

    Article  CAS  Google Scholar 

  • Qian J, Ferro AR, Fowler KR (2008) Estimating the resuspension rate and residence time of indoor particles. J Air Waste Manage Assoc 58:502–516

    Article  CAS  Google Scholar 

  • Qian J, Hospodsky D, Yamamoto N, Nazaroff WW, Peccia J (2012) Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22:339–351

    Article  CAS  Google Scholar 

  • Qian J, Peccia J, Ferro AR (2014) Walking-induced particle resuspension in indoor environments. Atmos Environ 89:464–481

    Article  CAS  Google Scholar 

  • Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces. J Colloid Interface Sci 232:10–16

    Article  CAS  Google Scholar 

  • Raja S, Xu Y, Ferro AR, Jaques PA, Hopke PK (2010) Resuspension of indoor aeroallergens and relationship to lung inflammation in asthmatic children. Environ Int 36:8–14

    Article  CAS  Google Scholar 

  • Reponen T, Trakumas S, Willeke K, Grinshpun SA, Choe KT, Friedman W (2002) Dynamic monitoring of the dust pickup efficiency of vacuum cleaners. AIHA J 63:689–697

    Article  Google Scholar 

  • Rosati JA, Thornburg J, Rodes C (2008) Resuspension of particulate matter from carpet due to human activity. Aerosol Sci Technol 42:472–482. https://doi.org/10.1080/02786820802187069

    Article  CAS  Google Scholar 

  • Rumpf H (1990) Particle technology. Chapman & Hall, New York

    Book  Google Scholar 

  • Schneider T, Kildesø J, Breum N (1999) A two compartment model for determining the contribution of sources, surface deposition and resuspension to air and surface dust concentration levels in occupied rooms. Build Environ 34:583–595

    Article  Google Scholar 

  • Serfozo N, Chatoutsidou SE, Lazaridis M (2014) The effect of particle resuspension during walking activity to PM10 mass and number concentrations in an indoor microenvironment. Build Environ 82:180–189. https://doi.org/10.1016/j.buildenv.2014.08.017

    Article  Google Scholar 

  • Shaughnessy R, Vu H (2012) Particle loadings and resuspension related to floor coverings in chamber and in occupied school environments. Atmos Environ 55:515–524

    Article  CAS  Google Scholar 

  • Soltani M, Ahmadi G (1994) On particle adhesion and removal mechanisms in turbulent flows. J Adhes Sci Technol 8:763–785. https://doi.org/10.1163/156856194X00799

    Article  CAS  Google Scholar 

  • Soltani M, Ahmadi G, Bayer RG, Gaynes MA (1995) Particle detachment mechanisms from rough surfaces under substrate acceleration. J Adhes Sci Technol 9:453–473

    Article  CAS  Google Scholar 

  • Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58:2–13

    Article  CAS  Google Scholar 

  • Taimisto P, Tainio M, Karvosenoja N, et al (2011) Evaluation of intake fractions for different subpopulations due to primary fine particulate matter (PM2.5) emitted from domestic wood combustion and traffic in Finland. Air Qual Atmos Health 4:199–209. https://doi.org/10.1007/s11869-011-0138-3

  • Thatcher TL, Layton DW (1995) Deposition, resuspension, and penetration of particles within a residence. Atmos Environ 29:1487–1497

    Article  CAS  Google Scholar 

  • Tian Y, Sul K, Qian J, Mondal S, Ferro AR (2014) A comparative study of walking-induced dust resuspension using a consistent test mechanism. Indoor Air 24:592–603

    Article  CAS  Google Scholar 

  • Wang K, Suyuan Y, Yingge W, Wei P (2020) Measurements and analysis of adhesive forces for micron particles on common indoor surfaces. Indoor and Built Environment 29(7):931–941. https://doi.org/10.1177/1420326X19863830

  • Wu Y, Gao N (2014) The dynamics of the body motion induced wake flow and its effects on the contaminant dispersion. Build Environ 82:63–74

    Google Scholar 

  • Wu T, Fu M, Valkonen M, Täubel M, Xu Y, Boor BE (2021) Particle resuspension dynamics in the infant near-floor microenvironment. Environ Sci Technol 55:1864–1875

    Article  CAS  Google Scholar 

  • You S, Wan MP (2015) Experimental investigation and modelling of human-walking-induced particle resuspension. Indoor Built Environ 24:564–576. https://doi.org/10.1177/1420326X14526424

  • Zhou B, Zhao B, Tan Z (2011) How particle resuspension from inner surfaces of ventilation ducts affects indoor air quality – a modeling analysis. Aerosol Sci Technol 45:996–1009. https://doi.org/10.1080/02786826.2011.576281

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea R. Ferro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ferro, A.R. (2022). Resuspension. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-16-7680-2_11

Download citation

Publish with us

Policies and ethics