Skip to main content

PSO Tuned PID Controller for DC Motor Speed Control

  • Conference paper
  • First Online:
Control and Measurement Applications for Smart Grid

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 822))

Abstract

The purpose of this paper is to plan a PSO algorithm application to tune the parameters of the PID regulator. This paper employs the model of a DC motor as a plant. As the conventional tuning of PID regulator using Ziegler–Nichols (Z-N) technique delivers a major overshoot, the present-day heuristics approach named particle swarm optimization (PSO) has been utilized here to upgrade the proficiency of old conventional technique. Four different performance indices (IAE, ISE, ITAE, and ITSE) are used while comparing PSO-based PID and ZN-PID in this paper. The results have shown the better performance of the PID tuning utilizing the PSO-based optimization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

b :

Motor Viscous Friction Constant

C(s):

Controller Transfer Function

e :

Control Error Signal

e V :

Back EMF

G(s):

Plant Transfer Function

i :

Armature Current

IAE:

Integral Absolute Error

ISE:

Integral Square Error

ITAE:

Integral Time Absolute Error

ITSE:

Integral Time Square Error

J :

Moment of Inertia of Rotor

K :

Motor Torque Constant

Kt:

EMF Constant

Kw:

EMF Constant

K p :

Proportional Gain

K i :

Integral Gain

K d :

Derivative Gain

L :

Inductance

OF:

Objective Function

PID:

Proportional Integral Derivative

PSO:

Particle Swarm Optimization

PV:

Process Variable

r :

Input Signal

R :

Armature Resistance

T :

Torque

y :

Output Signal

Z-N:

Ziegler–Nichols

References

  1. Tavakoli S, Sadeghi J, Griffin I, Fleming PJ (2016) PI controller tuning for load disturbance rejection using constrained optimization. Int J Dyn Control 6(1):188–199

    Article  MathSciNet  Google Scholar 

  2. Ogata K (1987) Modern control systems. Prentice Hall, Minneapolis, MN

    Google Scholar 

  3. Gaing Z-L (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384–391

    Article  Google Scholar 

  4. Zhao J, Li T, Qian J (2005) Application of particle swarm optimization algorithm on robust PID controller tuning. In: Advances in natural computation. Springer, Berlin/Heidelberg, pp 948–957

    Google Scholar 

  5. Mahony TO, Downing CJ, Fatla K (2000) Genetic algorithm for PID parameter optimization: minimizing error criteria. In: Process control and instrumentation. University of Stracthclyde, pp 148–153

    Google Scholar 

  6. Wang Q, Spronck P, Tracht R (2003) An overview of genetic algorithms applied to control engineering problems. In: Proceedings of the international conference on machine learning and cybernetics (IEEE Cat. No.03EX693)

    Google Scholar 

  7. Latha K, Rajinikanth V, Surekha PM (2013) PSO-based PID controller design for a class of stable and unstable systems. ISRN Artif Intell 2013:1–11

    Article  Google Scholar 

  8. Vincent A, Nersisson R (2017) Particle swarm optimization based PID controller tuning for level control of two tank system. IOP Conf Ser Mater Sci Eng 263:052001

    Google Scholar 

  9. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks (Perth, Australia). IEEE Service Center, Piscataway, NJ, pp IV: 1942–1948

    Google Scholar 

  10. Hellerstein J (2004) Introduction and overview, Ch 1. In: Feedback control of computing systems. Wiley, New York City, NY, pp 3–28

    Google Scholar 

  11. Messner B, Tilbury D (2017) DC motor speed: system modeling. Accessed 01 Feb 2021. [Online]. Available: https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling

  12. Zaccarian L (2012) Lecture notes, topic: “Dc motors: dynamic model and control techniques”. University of Rome, Rome

    Google Scholar 

  13. Ziegler JG, Nichols NB (1993) Optimum settings for automatic controllers. ASME J Dyn Syst Meas Control 115(2B):220–222

    Google Scholar 

  14. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE world congress on computational intelligence, pp 69–73

    Google Scholar 

  15. Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the conference on evolutionary computation, pp 1951–1957

    Google Scholar 

  16. Bequette BW (2003) Process control: modeling, design, and simulation. Prentice Hall PTR, India

    Google Scholar 

  17. Solihin MI, Tack LF, Kean ML (2011) Tuning of PID controller using particle swarm optimization (PSO). Int J Adv Sci Eng Inf Technol 1(4):458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Sharma, V., Rahi, O.P. (2022). PSO Tuned PID Controller for DC Motor Speed Control. In: Suhag, S., Mahanta, C., Mishra, S. (eds) Control and Measurement Applications for Smart Grid. Lecture Notes in Electrical Engineering, vol 822. Springer, Singapore. https://doi.org/10.1007/978-981-16-7664-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7664-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7663-5

  • Online ISBN: 978-981-16-7664-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics