Skip to main content

Utilization of Lignocellulosic Agro-Waste as an Alternative Carbon Source for Industrial Enzyme Production

  • Chapter
  • First Online:
Waste Management, Processing and Valorisation

Abstract

Waste, as a by-product of most human activities, especially of agricultural origin, contains an equivalent useful product substance that is available within it. Synthetic media used for enzyme production in biotechnology industries is becoming costlier and has become a subject of concern for many food-processing industries. Hence, manufacturers are now in search of alternative approaches to cut down the cost of production. Therefore, this review focuses on how agro-industrial wastes have been utilized as the sole carbon source for enzyme production in a solid-state fermentation culture. Similarly, the review limits its scope to enzymes produced from fungal sources only. Conclusively, the review suggests that the ability to use agro-waste as an alternative carbon source in the production of enzymes calls for its wider utilization in the food-processing industries, thus, alleviating the cost concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bharathiraja, S., Suriya, J., Krishnan, M., Manivasagan, P., Kim, S.-K.: Production of enzymes from agricultural wastes and their potential industrial applications. Adv. Food Nutr. Res. 80, 125–148 (2017)

    CAS  Google Scholar 

  2. Goh, K.M., Kahar, U.M., Chai, Y.Y., Chong, C.S., Chai, K.P., et al.: Recent discoveries and applications of Anoxybacillus. Appl. Microbiol. Biotechnol. 97, 1475–1488 (2013)

    CAS  Google Scholar 

  3. Aguilar, C.N., Gutierrez-Sánchez, G., rado-Barragán, P.A., Rodríguez-Herrera, R., Martínez-Hernandez, J.L., Contreras-Esquivel, J.C.: Perspectives of solid state fermentation for production of food enzymes. Am. J. Biochem. Biotechnol. 4(4), 354–366 (2008)

    Google Scholar 

  4. Ravindran, R., Jaiswal, A.: Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering 3, 30 (2016)

    Google Scholar 

  5. Rose’s, P.R., Guerra, N.P.: Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J. Microbiol. Biotechnol. 25, 1929–1939 (2009)

    Google Scholar 

  6. Ajay, P., Farhath, K.: Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state fermentation. Biores. Technol. 101, 7563–7569 (2010)

    Google Scholar 

  7. Baysal, Z., Uyar, F., Aytekin, C.: Solid-state fermentation for production of alpha amylase by a thermotolerant Bacillus subtilis from hot spring water. Process Biochem. 93, 1020–1025 (2003)

    Google Scholar 

  8. Admassu, H., Wei, Z., Ruijin, Y., Mohammed, A.A.G., Wenbin, Z.: Recent Advances on Efficient Methods for α-Amylase Production by Solid State Fermentation (SSF). Int. J. Adv. Res. 3(9), 1485–1493 (2015)

    CAS  Google Scholar 

  9. Lopes, A.S., Rodrigues, C., Jefferson, D.L.C., Marília, P.M., Rafaela, D.O.P., Luiz, A.B., Luciana, P.D.S.V., Carlos, R.S.: Gibberellic acid fermented extract obtained by solid-state fermentation using citric pulp by Fusarium moniliforme: Influence on Lavandula Angustifolia Mill., Cultivated In Vitro. Pak. J. Bot. 45(6), 2057 (2013)

    Google Scholar 

  10. Hölker, U.: Lenz J Solid-state fermentation–are there any biotechnological advantages? Curr. Opin. Microbiol. 8, 301–306 (2005)

    Google Scholar 

  11. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., Chauhan, B.: Microbial alpha-amylases: a biotechnological perspective. Process Biochem. 38, 1599–1616 (2003)

    CAS  Google Scholar 

  12. Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K.M., Pandey, A.: Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol. Biotechnol. 44, 269–274 (2006)

    CAS  Google Scholar 

  13. Babu, K.R., Satyanarayana, T.: Production of bacterial enzymes by solid state fermentation. J. Sci. Ind. Res. 55, 464–467 (1996)

    CAS  Google Scholar 

  14. Sodhi, H.K., Sharma, K., Gupta, J.K., Soni, S.K.: Production of a thermostable alpha amylase from Bacillus sp. PS-7 by solid-state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochem. 40, 525–534 (2005)

    Google Scholar 

  15. Neelam, G., Samanta, R., Subtapa, B., Vivek, R.: Microbial enzymes and their relevance in industries, medicine and beyond. BioMed. Res. Int. 329121 (2013)

    Google Scholar 

  16. Sindhu, R., Suprabha, G.N., Shashidhar, S.: Optimization of process parameters for the production of alpha-amylase from Penicillum janthinellum (NCIM 4960) under solid-state fermentation. Afr. J. Microb. Res. 3(9), 498–503 (2009)

    Google Scholar 

  17. Aliyu, S., Alam, M.Z., Ismail, A.M., Hamzah, S.M.: Optimization of lipase production by Candida cylindracea in palm oil mil effluent based medium using statistical experimental design. J. Mol. Catal. B Enzym. 69, 66–73 (2011)

    Google Scholar 

  18. Solange, M.I., Jose, T.A.: Increase in the fructo oligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicas using agro-industrial residues as support and nutrient source. Biochem. Eng. J. 53, 154–157 (2010)

    Google Scholar 

  19. Francis, F., Sabu, A., Nampoothiri, K.M., Ramachandran, S., Ghosh, S., Szakacs, G., Pandey, A.: Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem. Eng. J. 15, 107–115 (2003)

    CAS  Google Scholar 

  20. Mamo, G., Gashe, B.A., Gessesse, A.: A highly thermostable amylase from a newly isolated thermophilic Bacillus sp. WN11. J. Appl. Microbiol. 86, 557–560 (1999)

    CAS  Google Scholar 

  21. Pandey, R., Nigam, P., Soccol, C.R., Singh, D., Soccol, V.T., Mohan, R.: Advances in microbial amylases. Biotechnol. Appl. Biochem. 31, 135–152 (2000)

    CAS  Google Scholar 

  22. Oudjeriouat, N., Moreau, Y., Santimone, M., Svensson, B., Marchis-Mouren, G., Desseaux, V.: On the mechanism of amylase. Eur. J. Biochem. FEBS. 270, 3879 (2003)

    Google Scholar 

  23. Ramachandran, S., Patel, A.K., Nampoothiri, K.M., Francis, F., Nagy, V., Szakacs, G., Pandey, A.: Coconut oil cake, a potential raw material for the production of alpha amylase. Bioresour. Techno. 93, 167–174 (2004)

    Google Scholar 

  24. Kathiresan, K., Manivannan, S.: Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afri. J. Biotech. 5, 829–832 (2006)

    Google Scholar 

  25. Banks, K.R., Satyanarayana, T.: Production of bacterial enzymes by solid-state fermentation. J. Sci. Ind. Res. 55, 464–467 (1975)

    Google Scholar 

  26. Liu, X.D., Xu, Y.: A novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour. Technol. 99, 4315–4320 (2008)

    CAS  Google Scholar 

  27. Veana, F., Martínez-Hernández, J.L., Aguilar, C.N., Rodríguez-Herrera, R., Michelena, G.: Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Braz. J. Microbiol. 45, 373–377 (2014)

    CAS  Google Scholar 

  28. Kumar, P., Satyanarayana, T.: Microbial glucoamylases: Characteristics and applications. Crit. Rev. Biotechnol. 29, 225–255 (2009)

    CAS  Google Scholar 

  29. Diler, G., Chevallier, S., Pöhlmann, I., Guyon, C., Guilloux, M., Le-Bail, A.: Assessment of amyloglucosidase activity during production and storage of laminated pie dough. Impact on raw dough properties and sweetness after baking. J. Cereal Sci. 61, 63–70 (2015)

    Google Scholar 

  30. Singh, H., Soni, S.K.: Production of starch-gel digesting amyloglucosidase by Aspergillus oryzae HS-3 in solid state fermentation. Process Biochem. 37, 453–459 (2001)

    Google Scholar 

  31. Shin, H.K., Kong, J.Y., Lee, J.D., Lee, T.H.: Syntheses of hydroxybenzyl-α-glucosides by amyloglucosidase-catalyzed transglycosylation. Biotechnol. Lett. 22, 321–325 (2000)

    CAS  Google Scholar 

  32. Pandey, A.: Improvements in solid-state fermentation for glucoamylase production. Biol. Wastes 34, 11–19 (1990)

    CAS  Google Scholar 

  33. Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M.: Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind. Crops Prod. 38, 6–13 (2012)

    CAS  Google Scholar 

  34. Hai-Yan Sun, H., Li, J., Zhao, P., Peng, M.: Banana peel: A novel substrate for cellulase production under solid-state fermentation. Afr. J. Biotechnol. 10, 17887–17890 (2011)

    Google Scholar 

  35. Saravanan, P., Muthuvelayudham, R., Viruthagiri, T.: Application of Statistical Design for the Production of Cellulase by Trichoderma reesei Using Mango Peel. Enzyme Res. 2012, 157643 (2012)

    Google Scholar 

  36. Adeniran, H.A., Abiose, S.H., Ogunsua, A.O.: Production of fungal β-amylase and Amyloglucosidase on some Nigerian agricultural residues. Food Bioprocess Technol. 3, 693–698 (2010)

    CAS  Google Scholar 

  37. Leite, P., Salgado, J.M., Venâncio, A., Domínguez, J.M., Belo, I.: Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour. Technol. 214, 737–746 (2016)

    CAS  Google Scholar 

  38. Hassan, S.S., Williams, G.A., Jaiswal, A.K.: Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 262, 310–318 (2018)

    CAS  Google Scholar 

  39. Salim, A.A., Grbavˇci´c, S., Šekuljica, N., Stefanovi´c, A., Jakoveti´c Tanaskovi´c, S., Lukovi´c, N., Kneževi´c-Jugovi´c, Z.: Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods. Bioresour. Technol. 228, 193–200 (2017)

    Google Scholar 

  40. Prakash, B., Vidyasagar, M., Madhukumar, M.S., Muralikrishna, G., Sreeramulu, K.: Production, purification and characterization of two extremely halotolerant, thermostable and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem. 44, 210–215 (2009)

    Google Scholar 

  41. Harris, A.D., Ramalingam, C.: Xylanases and its application in food industry: a review. J. Exp. Sci. 1, 1–11 (2010)

    Google Scholar 

  42. Knob, A., Beitel, S.M., Fortkamp, D., Terrasan, C.R.F., de Almeida, A.F.: Production, purification and characterization of a major Penicillium glabrum Xylanase using brewer’s spent grain as substrate. Biomed. Res. Int. 2013, 1–8 (2013)

    Google Scholar 

  43. Goswami, G., Pathak, R.: Microbial xylanases and their biomedical applications: a review. Int. J. Basic Clin. Pharmacol. 2, 237 (2013)

    Google Scholar 

  44. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S.: Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005)

    CAS  Google Scholar 

  45. Lowe, S.E., Theodorou, M.K., Trinci, A.P.: Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose and xylan. Appl. Environ. Microbiol. 53, 1216–1223 (1987)

    CAS  Google Scholar 

  46. Gawande, P.V., Kamat, M.Y.: Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J. Appl. Microbiol. 87, 511–519 (1999)

    CAS  Google Scholar 

  47. Vandamme, E.J., Derycke, D.G.: Microbial inulinases: Fermentation process, properties and applications. Adv. Appl. Microbiol. 29, 139–176 (1983)

    CAS  Google Scholar 

  48. Vijayaraghavan, K., Yamini, D., Ambika, V., Sravya Sowdamini, N.: Trends in inulinase production—a review. Crit. Rev. Biotechnol. 29, 67–77 (2009)

    CAS  Google Scholar 

  49. Chesini, M., Neila, L.P., Fratebianchi de la Parra, D., Rojas, N.L., Contreras Esquivel, J.C., Cavalitto, S.F., Ghiringhelli, P.D., Hours, R.A.: Aspergillus kawachii produces an inulinase in cultures with yacon (Smallanthus sonchifolius) as substrate. Electron. J. Biotechnol. 16 (2013)

    Google Scholar 

  50. Chi, Z., Chi, Z., Zhang, T., Liu, G., Yue, L.: Inulinase-expressing microorganisms and applications of inulinases. Appl. Microbiol. Biotechnol. 82, 211–220 (2009)

    CAS  Google Scholar 

  51. Mazutti, M., Bender, P., Treichel, H., Di, L.M.: Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate. Enzyme Microb. Technol. 39, 56–59 (2006)

    CAS  Google Scholar 

  52. Dilipkumar, M., Rajasimman, M., Rajamohan, N.: Utilization of copra waste for the solid-state fermentatative production of inulinase in batch and packed bed reactors. Carbohydr. Polym. 102, 662–668 (2014)

    CAS  Google Scholar 

  53. Gupta, A.K., Kaur, N., Singh, R.: Fructose and inulinase production from waste Cichorium intybus roots. Biol. Wastes 29, 73–77 (1989)

    CAS  Google Scholar 

  54. Clarke, J.H., Davidson, K., Rixon, J.E., Halstead, J.R., Fransen, M.P., Gilbert, H.J., Hazlewood, G.P.: A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and alpha-galactosidase. Appl. Microbiol. Biotechnol. 53, 661–667 (2000)

    CAS  Google Scholar 

  55. Naganagouda, K., Salimath, P.V., Mulimani, V.H.: Purification and characterization of endo-beta-1,4 mannanase from Aspergillus niger gr for application in food processing industry. J. Microbiol. Biotechnol. 19, 1184–1190 (2009)

    CAS  Google Scholar 

  56. Mamma, D., Hatzinikolaou, D.G., Christakopoulos, P.: Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. J. Mol. Catal. B Enzym. 27, 183–190 (2004)

    CAS  Google Scholar 

  57. Dhawan, S., Kaur, J.: Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol. 27, 197–216 (2007)

    CAS  Google Scholar 

  58. Yin, J.-S., Liang, Q.-L., Li, D.-M., Sun, Z.-T.: Optimization of production conditions for β-mannanase using apple pomace as raw material in solid-state fermentation. Ann. Microbiol. 63, 101–108 (2013)

    CAS  Google Scholar 

  59. Olaniyi, O.O., Osunla, C.A., Olaleye, O.O.: Exploration of different species of orange peels for mannanase production. E3 J. Biotechnol. Pharm. Res. 5, 12–17 (2014)

    Google Scholar 

  60. Rashid, J.I.A., Samat, N., Yusoff, W.M.W.: Studies on extraction of mannanase enzyme by Aspergillus terreus SUK-1 from fermented Palm Kernel Cake. Pak. J. Biol. Sci. 16, 933–938 (2013)

    Google Scholar 

  61. Onilude, A.A., Festus Fadahunsi, I., Antia, E., Garuba, E.O., Inuwa, M., Afaru, J.: Characterization of Crude Alkaline β-mannosidase produced by Bacillus sp. 3A Isolated from Degraded Palm Kernel Cake. AU J. Technol. 15, 152–158 (2012)

    Google Scholar 

  62. Almeida, J.M., Lima, V.A., Giloni-Lima, P.C., Knob, A.: Passion fruit peel as novel substrate for enhanced β-glucosidases production by Penicillium verruculosum: Potential of the crude extract for biomass hydrolysis. Biomass Bioenergy 72, 216–226 (2015)

    CAS  Google Scholar 

  63. McCleary, B.V., Matheson, N.K.: Action patterns and substrate-binding requirements of β-d-mannanase with mannosaccharides and mannan-type polysaccharides. Carbohydr. Res. 119, 191–219 (1983)

    CAS  Google Scholar 

  64. Chauhan, P.S., Puri, N., Sharma, P., Gupta, N.: Mannanases: Microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biotechnol. 93, 1817–1830 (2012)

    CAS  Google Scholar 

  65. Hang, Y.D., Woodams, E.E.: β-Fructofuranosidase production by Aspergillus species from apple pomace. LWT Food Sci. Technol. 28, 340–342 (1995)

    CAS  Google Scholar 

  66. Rashad, M.M., Nooman, M.U.: Production, purification and characterization of extracellular invertase from Saccharomyses Cerevisiae NRRL Y-12632 by solid-state fermentation of red carrot residue. Aust. J. Basic Appl. Sci. 3, 1910–1919 (2009)

    CAS  Google Scholar 

  67. Alegre, A.C.P., Polizeli, M.d.L.T.d.M., Terenzi, H.F., Jorge, J.A., Guimarães, L.H.S.: Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Braz. J. Microbiol. 40, 612–622 (2009)

    Google Scholar 

  68. Uma, C., Gomathi, D., Ravikumar, G., Kalaiselvi, M., Palaniswamy, M.: Production and properties of invertase from a Cladosporium cladosporioides in SmF using pomegranate peel waste as substrate. Asian Pac. J. Trop. Biomed. 2, S605–S611 (2012)

    Google Scholar 

  69. Sakai, T., Sakamoto, T., Hallaert, J., Vandamme, E.J.: Pectin, pectinase and protopectinase: production, properties and applications. Adv. Appl. Microbiol. 39, 213–294 (1993)

    CAS  Google Scholar 

  70. Servili, M., Begliomini, A.L., Montedoro, G., Petruccioli, M., Federici, F.: Utilisation of a yeast pectinase in olive oil extraction and red wine making processes. J. Sci. Food Agric. 58, 253–260 (1992)

    CAS  Google Scholar 

  71. Hours, R.A., Voget, C.E., Ertola, R.J.: Some factors affecting pectinase production from apple pomace in solid-state cultures. Biol. Wastes 24, 147–157 (1988)

    CAS  Google Scholar 

  72. Botella, C., Diaz, A., de Ory, I., Webb, C., Blandino, A.: Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 42, 98–101 (2007)

    CAS  Google Scholar 

  73. Almeida, C., Brányik, T., Moradas-Ferreira, P., Teixeira, J.: Continuous production of pectinase by immobilized yeast cells on spent grains. J. Biosci. Bioeng. 96, 513–518 (2003)

    CAS  Google Scholar 

  74. Patil, S.R., Dayanand, A.: Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions. Bioresour. Technol. 97, 2054–2058 (2006)

    CAS  Google Scholar 

  75. Silva, D., Tokuioshi, K., da Silva Martins, E., Da Silva, R., Gomes, E.: Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem. 40, 2885–2889 (2005)

    CAS  Google Scholar 

  76. Sawant, R., Nagendran, S.: Protease: an enzyme with multiple Industrial Applications. World J. Pharm. Pharm. Sci. 3, 568–579 (2014)

    Google Scholar 

  77. Gupta, R., Beg, Q., Lorenz, P.: Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15–32 (2002)

    CAS  Google Scholar 

  78. Pillai, P., Mandge, S., Archana, G.: Statistical optimization of production and tannery applications of a keratinolytic serine protease from Bacillus subtilis P13. Process Biochem. 46, 1110–1117 (2011)

    CAS  Google Scholar 

  79. Radha, S., Nithya, V.J., Himakiran Babu, R., Sridevi, A., Prasad, N., Narasimha, G.: Production and optimization of acid protease by Aspergillus spp under submerged fermentation. Arch. Appl. Sci. Res. 3, 155–163 (2011)

    CAS  Google Scholar 

  80. Nascimento, R.P., Junior, N.A., Coelho, R.R.R.: Brewer’s spent grain and corn steep liquor as alternative culture medium substrates for proteinase production by Streptomyces malaysiensis AMT-3. Braz. J. Microbiol. 42, 1384–1389 (2011)

    Google Scholar 

  81. Chancharoonpong, C., Hsieh, P.-C., Sheu, S.-C.: Enzyme production and growth of Aspergillus oryzae S. on Soybean Koji Fermentation. APCBEE Procedia 2, 57–61 (2012)

    Google Scholar 

  82. Belmessikh, A., Boukhalfa, H., Mechakra-Maza, A., Gheribi-Aoulmi, Z., Amrane, A.: Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. J. Taiwan Inst. Chem. Eng. 44, 377–385 (2013)

    Google Scholar 

  83. Veerabhadrappa, M.B., Shivakumar, S.B., Devappa, S.: Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J. Biosci. Bioeng. 117, 208–214 (2014)

    CAS  Google Scholar 

  84. Kieliszek, M., Misiewicz, A.: Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol. 59, 241–250 (2014)

    CAS  Google Scholar 

  85. Motoki, M., Seguro, K.: Transglutaminase and its use for food processing. Trends Food Sci. Technol. 9, 204–210 (1998)

    CAS  Google Scholar 

  86. Cortez, J., Bonner, P.L., Griffin, M.: Application of transglutaminases in the modification of wool textiles. Enzym. Microb. Technol. 34, 64–72 (2004)

    CAS  Google Scholar 

  87. Téllez-Luis, S.J., González-Cabriales, J.J., Ramírez, J.A., Vázquez, M.: Production of Transglutaminase by Streptoverticillium ladakanum NRRL-3191 using glycerol as carbon source. Food Technol. Biotechnol. 42, 75–81 (2004)

    Google Scholar 

  88. de Souza, C.F.V., Rodrigues, R.C., Heck, J.X., Ayub, M.A.Z.: Optimization of transglutaminase extraction produced by Bacillus circulans BL32 on solid-state cultivation. J. Chem. Technol. Biotechnol. 83, 1306–1313 (2008)

    Google Scholar 

  89. Aravindan, R., Anbumathi, P., Viruthagiri, T.: Lipase applications in food industry. Indian J. Biotechnol. 6, 141–158 (2007)

    CAS  Google Scholar 

  90. Fernandez-Lafuente, R.: Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J. Mol. Catal. B Enzym. 62, 197–212 (2010)

    CAS  Google Scholar 

  91. Mohammadi, M., Habibi, Z., Dezvarei, S., Yousefi, M., Samadi, S., Ashjari, M.: Improvement of the stability and selectivity of Rhizomucor miehei lipase immobilized on silica nanoparticles: Selective hydrolysis of fish oil using immobilized preparations. Process Biochem. 49, 1314–1323 (2014)

    CAS  Google Scholar 

  92. Prasad, M.P., Manjunath, K.: Comparative study on biodegradation of lipid-rich wastewater using lipase producing bacterial species. Indian J. Biotechnol. 10, 121–124 (2011)

    CAS  Google Scholar 

  93. Sabat, S., et al.: Study of enhanced lipase production using agrowaste product by bacillus stearothermophilus Mtcc 37. IJPCBS 2(3), 266–274 (2012)

    CAS  Google Scholar 

  94. Rohit, S., Chisti. Y., Banerjee. U.C.: Production, purification, characterization and applications of lipases. Biotechnol. Adv. (2001)

    Google Scholar 

  95. Salihu, A., Bala, M., Alam, M.Z.: Lipase production by Aspergillus niger using sheanut cake: an optimization study. J. Taibah Univ. Sci. 10, 850–859 (2016)

    Google Scholar 

  96. Kanmani, P., Kumaresan, K., Aravind, J.: Utilization of coconut oil mill waste as a substrate for optimized lipase production, oil biodegradation and enzyme purification studies in Staphylococcus pasteuri. Electron. J. Biotechnol. 18, 20–28 (2015)

    Google Scholar 

  97. Toscano, L., Gochev, V., Montero, G., Stoytcheva, M.: Enhanced production of extracellular lipase by novel mutant strain of aspergillus niger. Biotechnol. Biotechnol. Equip. 2243–2247 (2011)

    Google Scholar 

  98. Prasad, S., Singh, A., Joshi, H.C.: Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39 (2007)

    Google Scholar 

  99. Gavrilescu, M., Chisti, Y.: Biotechnology—a sustainable alternative for chemical industry. Biotechnol. Adv. 23, 471–499 (2005). https://doi.org/10.1016/j.biotechadv.2005.03.004

    Article  CAS  Google Scholar 

  100. Gurung, N., Ray, S., Bose, S., Rai, V.: A broader view: microbial enzymes and their relevance in industries, medicine and beyond. BioMed. Res. Int. 2013, 329121 (2013)

    Google Scholar 

  101. Li, S., Yang, X., Yang, S., Zhu, M., Wang, X.: Technology prospecting on enzymes: application, marketing and engineering. Comput. Struct. Biotechnol. J. 2, e201209017 (2012)

    Google Scholar 

  102. Pandey, A., Binod, P., Palkhiwala, P., Gaikaiwari, R., Madhavan, N., Duggal, A., Dey, K.: Industrial enzymes—present status and future perspectives for India. J. Sci. Ind. Res. 72, 271–286 (2013)

    Google Scholar 

  103. Adrio, J.L., Demain, A.L.: Microbial enzymes: tools for biotechnological processes. Biomolecules 4(1), 117–139 (2014)

    Google Scholar 

  104. Kalim, B., Böhringer, N., Ali, N., Schäberle, T.F.: Xylanases—from microbial origin to industrial application. Br. Biotechnol. J. 7(1), 1–20 (2015)

    CAS  Google Scholar 

  105. Heipieper, H.J., Neumann, G., Cornelissen, S., Meinhardt, F.: Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol. 74(5), 961–973 (2007)

    CAS  Google Scholar 

  106. Qingchun, J., Sujing, X., Bingfang, H., Xiaoning, L.: Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J. Mol. Catal. B Enzym. 66(3–4), 264–269 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ja’afar Nuhu Ja’afar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ja’afar, J.N., Shitu, A. (2022). Utilization of Lignocellulosic Agro-Waste as an Alternative Carbon Source for Industrial Enzyme Production. In: Yaser, A.Z., Tajarudin, H.A., Embrandiri, A. (eds) Waste Management, Processing and Valorisation. Springer, Singapore. https://doi.org/10.1007/978-981-16-7653-6_12

Download citation

Publish with us

Policies and ethics