Skip to main content

Stem Cell Production: Processes, Practices, and Regulation

Stem Cell Culture and Expansion: Role of Culture, Types of Cells, Growth Conditions, Media Nutrients, Growth Factors, Growth Phase Cycle

  • Chapter
  • First Online:
Stem Cell Production
  • 789 Accesses

Abstract

The latest scientific advances in the field of cell and molecular biology allowed the development of a new category of therapies, based on the cells (gene therapy, cell therapy, and tissue engineering), collectively known as Advanced Therapies Medicinal Products (ATMPs). ATMPs can be defined as products which consists of cells that have been subject to substantial manipulation or that are not intended to be used for the same essential function(s) in the recipient and the donor. ATMPs are characterized by complex manufacturing bioprocesses, under Good Manufacturing Process (GMP) rules, and offer new therapeutic opportunities for different diseases, including those of genetic origin, tumors, and neurological diseases, that currently have limited or no effective conventional therapeutic options. To date, Cell Therapy Medicinal Products are the most developed and used as drugs for the cure of different pathologies, so we will focus our discussion on the description of this type of medicinal products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, Olabisi RM, Libutti S, Tischfield J, Maus MV, Deans R, Barcia RN, Anderson DG, Ritz J, Preti R, Parekkadan B (2018) Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng 2(6):362–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alzhrani RM, Alhadidi Q, Bachu RD, Shah Z, Dey S, Boddu SH (2017) Tanshinone IIA inhibits VEGF secretion and HIF-1α expression in cultured human retinal pigment epithelial cells under hypoxia. Curr Eye Res 42(12):1667–1673

    CAS  PubMed  Google Scholar 

  • Amini H, Rezaie J, Vosoughi A, Rahbarghazi R, Nouri M (2017) Cardiac progenitor cells application in cardiovascular disease. J Cardiovasc Thorac Res 9(3):127–132

    PubMed  PubMed Central  Google Scholar 

  • Anderson NR, Minutolo NG, Gill S, Klichinsky M (2021) Macrophage-based approaches for cancer immunotherapy. Cancer Res 81(5):1201–1208

    CAS  PubMed  Google Scholar 

  • Andriolo G, Provasi E, Lo Cicero V, Brambilla A, Soncin S, Torre T, Milano G, Biemmi V, Vassalli G, Turchetto L, Barile L, Radrizzani M (2018) Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method. Front Physiol 9:1169

    PubMed  PubMed Central  Google Scholar 

  • Andriolo G, Provasi E, Brambilla A, Lo Cicero V, Soncin S, Barile L, Turchetto L, Radrizzani M (2021) GMP-grade methods for cardiac progenitor cells: cell bank production and quality control. Methods Mol Biol 2286:131–166

    CAS  PubMed  Google Scholar 

  • Aoyama T (2017) Transportation of mesenchymal stem cells for clinical applications. In: Mesenchymal stem cells., Chapter 13. https://doi.org/10.5772/67716

    Chapter  Google Scholar 

  • Atri C, Guerfali FZ, Laouini D (2018) Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 19(6):1801

    PubMed Central  Google Scholar 

  • Aydoğdu N, Öztel ON, Karaöz E (2021) Isolation, culture, cryopreservation, and preparation of skin-derived fibroblasts as a final cellular product under good manufacturing practice–compliant conditions. Methods Mol Biol 2286:85–94

    PubMed  Google Scholar 

  • Barrett DM, Grupp SA, June CH (2015) Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street. J Immunol 195(3):755–761

    CAS  PubMed  Google Scholar 

  • Barut Selver Ö, Yağcı A, Eğrilmez S, Gürdal M, Palamar M, Çavuşoğlu T, Ateş U, Veral A, Güven Ç, Wolosin JM (2017) Limbal stem cell deficiency and treatment with stem cell transplantation. Turk J Ophthalmol 47(5):285–291

    PubMed  PubMed Central  Google Scholar 

  • Bieback K, Schallmoser K, Klüter H, Strunk D (2008) Clinical protocols for the isolation and expansion of mesenchymal stromal cells. Transfus Med Hemother 35(4):286–294

    PubMed  PubMed Central  Google Scholar 

  • Bonomi A, Lisini D, Navone SE et al (2015) Human CD14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of glioblastoma. Cytotherapy 17:310–319

    CAS  PubMed  Google Scholar 

  • Boudousquié C, Boand V, Lingre E, Dutoit L, Balint K, Danilo M, Harari A, Gannon PO, Kandalaft LE (2020) Development and optimization of a GMP-compliant manufacturing process for a personalized tumor lysate dendritic cell vaccine. Vaccines (Basel) 8(1):25

    Google Scholar 

  • Bunpetch V, Wu H, Zhang S, Ouyang H (2017) From “bench to bedside”: current advancement on large-scale production of mesenchymal stem cells. Stem Cells Dev 26(22):1662–1673

    PubMed  Google Scholar 

  • Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, Burger SR, Panoskaltsis-Mortari A, Keever-Taylor CA, Zhang MJ, Miller JS (2003) IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 32(2):177–186

    CAS  PubMed  Google Scholar 

  • Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, Long Y, Zhao J, Pei G (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10(5):908–911

    CAS  PubMed  Google Scholar 

  • Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, Pham VH, Ngoc VTN, Chu-Dinh T, Kushekhar K (2020) An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci 21(3):708

    CAS  PubMed Central  Google Scholar 

  • Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products

    Google Scholar 

  • Costa-Almeida R, Soares R, Granja PL (2018) Fibroblasts as maestros orchestrating tissue regeneration. J Tissue Eng Regen Med 12(1):240–251

    CAS  PubMed  Google Scholar 

  • Council Directive 90/385/EEC of 20 June 1990 on the approximation of the laws of the Member States relating to active implantable medical devices, adopted by the National Decree December 14, 1992, as amended with Legislative Decree no. 25.01.2010, 37—Implemented Directive 2007/47/EC

    Google Scholar 

  • Czapla J, Matuszczak S, Kulik K, Wiśniewska E, Pilny E, Jarosz-Biej M, Smolarczyk R, Sirek T, Zembala MO, Zembala M, Szala S, Cichoń T (2019) The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. Cell Res Ther 10(1):235

    Google Scholar 

  • Dafni U, Michielin O, Lluesma SM, Tsourti Z, Polydoropoulou V, Karlis D, Besser MJ, Haanen J, Svane IM, Ohashi PS, Kammula US, Orcurto A, Zimmermann S, Trueb L, Klebanoff CA, Lotze MT, Kandalaft LE, Coukos G (2019) Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol 30(12):1902–1913

    CAS  PubMed  Google Scholar 

  • Das R, Roosloot R, van Pel M et al (2019) Preparing for cell culture scale-out: establishing parity of bioreactor- and flask-expanded mesenchymal stromal cell cultures. J Transl Med 17:241

    PubMed  PubMed Central  Google Scholar 

  • Dazzi F, van Laar JM, Cope A, Tyndall A (2007) Cell therapy for autoimmune diseases. Arthritis Res Ther 9:206

    PubMed  PubMed Central  Google Scholar 

  • De Wynter EA, Ryder D, Lanza F, Nadali G, Johnsen H, Denning-Kendall P, Thing-Mortensen B, Silvestri F, Testa NG (1999) Multicentre European study comparing selection techniques for the isolation of CD34+ cells. Bone Marrow Transplant 23(11):1191–1196

    PubMed  Google Scholar 

  • Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7(1):e30264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Directive 2001/83/EC of the European Parliament and of the council of 6 November 2001 on the Community code relating to medicinal products for human use

    Google Scholar 

  • Directive 2004/23/EC of the European Parliament and of the council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells

    Google Scholar 

  • Eminli S, Foudi A, Stadtfeld M et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41(9):968–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fekete N, Rojewski MT, Fürst D, Kreja L, Ignatius A, Dausend G, Schrezenmeier H (2012) GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One 7(8):e43255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández Muñoz B, Lopez-Navas L, Bermejo MG, Romero IML, Fernández Muñoz B, Lopez-Navas L, Gonzalez Bermejo M, Lomas Romero IM, Montiel Aguilera MÁ, Campos Cuerva R, Arribas Arribas B, Nogueras S, Carmona Sánchez G, Santos González M (2021) A proprietary GMP human platelet lysate for the expansion of dermal fibroblasts for clinical applications. Platelets:1–12

    Google Scholar 

  • Florek M, Schneidawind D, Pierini A et al (2015) Freeze and thaw of CD4+CD25+Foxp3+ regulatory T cells results in loss of CD62L expression and a reduced capacity to protect against graft-versus-host disease. PLoS One 10:e0145763

    PubMed  PubMed Central  Google Scholar 

  • Fraser H, Safinia N, Grageda N, Thirkell S, Lowe K, Fry LJ, Scottá C, Hope A, Fisher C, Hilton R, Game D, Harden P, Bushell A, Wood K, Lechler RI, Lombardi G (2018) A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials. Mol Ther Methods Clin Dev 8:198–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile P, Sterodimas A, Pizzicannella J, Dionisi L, De Fazio D, Calabrese C, Garcovich S (2020) Systematic review: allogenic use of stromal vascular fraction (SVF) and decellularized extracellular matrices (ECM) as advanced therapy medicinal products (ATMP) in tissue regeneration. Int J Mol Sci 21(14):4982

    CAS  PubMed Central  Google Scholar 

  • Gottipamula S, Muttigi MS, Kolkundkar U, Seetharam RN (2013) Serum-free media for the production of human mesenchymal stromal cells: a review. Cell Prolif 46(6):608–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goula A, Gkioka V, Michalopoulos E, Katsimpoulas M, Noutsias M, Sarri EF, Stavropoulos C, Kostakis A (2020) Advanced therapy medicinal products challenges and perspectives in regenerative medicine. J Clin Med Res 12(12):780–786

    PubMed  PubMed Central  Google Scholar 

  • Guo ZS, Lotze MT, Zhu Z, Storkus WJ, Song XT (2020) Bi- and tri-specific T cell engager-armed oncolytic viruses: next-generation cancer immunotherapy. Biomedicines 8(7):204

    CAS  PubMed Central  Google Scholar 

  • Harris DT (2016) Long-term frozen storage of stem cells: challenges and solutions. J Biorepos Sci Appl Med 4:9

    Google Scholar 

  • Hasegawa K, Pomeroy JE, Pera MF (2010) Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell 6:521–531

    CAS  PubMed  Google Scholar 

  • Heathman TRJ, Nienow AW, McCall MJ et al (2015) The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 10(1):49–64

    CAS  PubMed  Google Scholar 

  • Hercend T, Farace F, Baume D, Charpentier F, Droz JP, Triebel F, Escudier B (1990) Immunotherapy with lymphokine-activated natural killer cells and recombinant interleukin-2: a feasibility trial in metastatic renal cell carcinoma. Clin Trial J Biol Response Mod 9(6):546–555

    CAS  Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654

    CAS  PubMed  Google Scholar 

  • Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38(2):107–123

    PubMed  PubMed Central  Google Scholar 

  • Ichim TE, O’Heeron P, Kesari S (2018) Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med 16(1):212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514

    PubMed  PubMed Central  Google Scholar 

  • Iyer RK, Bowles PA, Kim H, Dulgar-Tulloch A (2018) Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Front Med (Lausanne) 5:150

    Google Scholar 

  • Jaguin M, Houlbert N, Fardel O, Lecureur V (2013) Polarization profiles of human M-CSFgenerated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 281:51–61

    CAS  PubMed  Google Scholar 

  • Jain J, Veggiani G, Howarth M (2013) Cholesterol loading and ultrastable protein interactions determine the level of tumor marker required for optimal isolation of cancer cells. Cancer Res 73(7):2310–2321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Sabatino M, Somerville R, Wilson JR, Dudley ME, Stroncek DF, Rosenberg SA (2012) Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J Immunother 35(3):283–292

    PubMed  PubMed Central  Google Scholar 

  • Joe AW, Yeung SN (2014) Concise review: identifying limbal stem cells: classical concepts and new challenges. Stem Cells Transl Med 3(3):318–322

    CAS  PubMed  Google Scholar 

  • Keskar V, Sood A, Loghin E, Kovacs E, Duthie RS, Liu S, Park JH, Chadwick C, Smith R, Brown M, Stroncek DF, Highfill SL (2020) Novel DNA-based T-cell activator promotes rapid T-cell activation and expansion. J Immunother 43(8):231–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin Y, Merad M (2013) Macrophages: gatekeepers of tissue integrity. Cancer Immunol Res Am Assoc Cancer Res 1:201–209

    CAS  Google Scholar 

  • Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398

    PubMed  Google Scholar 

  • Lee S, Kivimäe S, Dolor A, Szoka FC (2016) Macrophage-based cell therapies: the long and winding road. J Control Release 240:527–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lisini D, Nava S, Pogliani S, Avanzini MA, Lenta E, Bedini G, Mantelli M, Pecciarini L, Croce S, Boncoraglio G, Maccario R, Parati EA, Frigerio S (2019) Adipose tissue-derived mesenchymal stromal cells for clinical application: an efficient isolation approach. Curr Res Transl Med 67(1):20–27

    CAS  PubMed  Google Scholar 

  • Lisini D, Nava S, Frigerio S, Pogliani S, Maronati G, Marcianti A, Coccè V, Bondiolotti G, Cavicchini L, Paino F, Petrella F, Alessandri G, Parati EA, Pessina A (2020) Automated large-scale production of paclitaxel loaded mesenchymal stromal cells for cell therapy applications. Pharmaceutics 12(5):411

    CAS  PubMed Central  Google Scholar 

  • Llames S, García-Pérez E, Meana Á, Larcher F, del Río M (2015) Feeder layer cell actions and applications. Tissue Eng Part B Rev 21(4):345–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105:2883–2888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandai M, Watanabe A, Kurimoto Y et al (2017) Autologous induced stemcell–derived retinal cells for macular degeneration. N Engl J Med 376(11):1038–1046

    CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    PubMed  PubMed Central  Google Scholar 

  • Martin-Manso G, Hanley PJ (2015) Using the quantum cell expansion system for the automated expansion of clinical-grade bone marrow-derived human mesenchymal stromal cells. Methods Mol Biol 1283:53–63

    CAS  PubMed  Google Scholar 

  • Márton C, Schultz SR, Averbeck BB (2020) Learning to select actions shapes recurrent dynamics in the corticostriatal system. Neural Netw 132:375–393

    PubMed  PubMed Central  Google Scholar 

  • Mebarki M, Abadie C, Larghero J, Cras A (2021) Human umbilical cord-derived mesenchymal stem/stromal cells: a promising candidate for the development of advanced therapy medicinal products. Stem Cell Res Ther 12(1):152

    PubMed  PubMed Central  Google Scholar 

  • Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milinkovic I, Aleksic Z, Jankovic S, Popovic O, Bajic M, Cakic S, Lekovic V (2015) Clinical application of autologous fibroblast cell culture in gingival recession treatment. J Periodontal Res 50(3):363–370

    CAS  PubMed  Google Scholar 

  • Miller JS, Tessmer-Tuck J, Blake N, Lund J, Scott A, Blazar BR, Orchard PJ (1997) Endogenous IL-2 production by natural killer cells maintains cytotoxic and proliferative capacity following retroviral-mediated gene transfer. Exp Hematol 25(11):1140–1148

    CAS  PubMed  Google Scholar 

  • Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, Greber B, Moore JB (2019) Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Therapy 10:341

    Google Scholar 

  • Mosser DM, Zhang X, Coligan JE et al (2008) Activation of murine macrophages. Curr Protocols Immunol. Chapter 14 Unit 14 12

    Google Scholar 

  • Mukhatayev Z, Ostapchuk YO, Fang D, Le Poole C (2021) Engineered antigen-specific regulatory T cells for autoimmune skin conditions. Autoimmuzhaoty Rev 20:102761

    CAS  Google Scholar 

  • Musial C, Gorska-Ponikowska M (2021) Medical progress: stem cells as a new therapeutic strategy for COVID-19. Stem Cell Res 52:102239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Namdar A, Nikbin B, Ghabaee M, Bayati A, Izad M (2010) Effect of IFN-beta therapy on the frequency and function of CD4(+) CD25(+) regulatory T cells and Foxp3 gene expression in relapsing-remitting multiple sclerosis (RRMS): a preliminary study. J Neuroimmunol 218(1-2):120–124

    CAS  PubMed  Google Scholar 

  • Nava S, Lisini D, Pogliani S, Dossena M, Bersano A, Pellegatta S, Parati E, Finocchiaro G, Frigerio S (2015) Safe and reproducible preparation of functional dendritic cells for immunotherapy in glioblastoma patients. Stem Cells Transl Med 4(10):1164–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nava S, Lisini D, Frigerio S, Pogliani S, Pellegatta S, Gatti L, Finocchiaro G, Bersano A, Parati EA (2020) PGE2 is crucial for the generation of FAST whole-tumor-antigens loaded dendritic cells suitable for immunotherapy in glioblastoma. Pharmaceutics 12(3):215

    CAS  PubMed Central  Google Scholar 

  • Olsen HE, Lynn GM, Valdes PA, Cerecedo Lopez CD, Ishizuka AS, Arnaout O, Bi WL, Peruzzi PP, Chiocca EA, Friedman GK, Bernstock JD (2021) Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies. Neurooncol Adv 3(1)

    Google Scholar 

  • Putnam AL, Safinia N, Medvec A, Laszkowska M, Wray M, Mintz MA, Trotta E, Szot GL, Liu W, Lares A, Lee K, Laing A, Lechler RI, Riley JL, Bluestone JA, Lombardi G, Tang Q (2013) Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am J Transplant 13(11):3010–3020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004

    Google Scholar 

  • Regulation (EU) 2017/1569 of 23 May 2017 of the European Parliament and of the Council by specifying principles of and guidelines for good manufacturing practice for investigational medicinal products for human use and arrangements for inspections

    Google Scholar 

  • Rivera T, Zhao Y, Ni Y, Wang J (2020) Human-induced pluripotent stem cell culture methods under cGMP conditions. Curr Protocols Stem Cell Biol 54:e117

    CAS  Google Scholar 

  • Sadeghi A, Pauler L, Annerén C, Friberg A, Brandhorst D, Korsgren O, Tötterman TH (2011) Large-scale bioreactor expansion of tumor-infiltrating lymphocytes. J Immunol Methods 364(1-2):94–100

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  • Schiariti MP, Restelli F, Ferroli P et al (2017) Fibronectin-adherent peripheral blood derived mononuclear cells as Paclitaxel carriers for glioblastoma treatment: an in vitro study. Cytotherapy 19(6):721–734

    CAS  PubMed  Google Scholar 

  • Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL (1991) Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 174(1):139–149

    CAS  PubMed  Google Scholar 

  • Sensebé L (2013) Beyond genetic stability of mesenchymal stromal cells. Cytotherapy 15(11):1307–1308

    PubMed  Google Scholar 

  • Sharma R, Khristov V, Rising A et al (2019) Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 11(475):eaat5580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    CAS  PubMed  Google Scholar 

  • Shivakumar SB, Bharti D, Jang SJ, Hwang SC, Park JK, Shin JK, Byun JH, Park BW, Rho GJ (2015) Cryopreservation of human Wharton’s jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants; a comparative study. Int J Stem Cells 8(2):155–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn Y-D, Han JW, Yoon Y-S (2012) Generation of induced pluripotent stem cells from somatic cells. In: Progress in molecular biology and translational science, vol 111. Academic Press, Cambridge, MA, pp 1–2

    Google Scholar 

  • Steyer B, Bu Q, Cory E, Jiang K, Duong S, Sinha D et al (2018) Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Rep 10:642–654

    CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CAS  PubMed  Google Scholar 

  • Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M, Dulong J, Monnier D, Gourmelon P, Gorin NC, Sensebé L (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115(8):1549–1553

    CAS  PubMed  Google Scholar 

  • Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA, Dudley ME (2008) Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 31(8):742–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damagedcorneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343(2):86–93

    CAS  PubMed  Google Scholar 

  • van Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O (2018) Molecular repolarisation of tumour-associated macrophages. Molecules 24(1):9

    PubMed Central  Google Scholar 

  • Varol C, Mildner A, Jung S (2015) Macrophages: development and tissue specialization. Ann Rev Immunol 33:643–675

    CAS  Google Scholar 

  • Vymetalova L, Kucirkova T, Knopfova L, Pospisilova V, Kasko T, Lejdarova H, Makaturova E, Kuglik P, Oralova V, Matalova E, Benes P, Koristek Z, Forostyak S (2020) Large-scale automated hollow-fiber bioreactor expansion of umbilical cord-derived human mesenchymal stromal cells for neurological disorders. Neurochem Res 45(1):204–214

    CAS  PubMed  Google Scholar 

  • Waldmann H, Chen TC, Graca L, Adams E, Daley S, Cobbold S, Fairchild PJ (2006) Regulatory T cells in transplantation. Semin Immunol 18:111–119

    CAS  PubMed  Google Scholar 

  • Yadav SK, Mishra PK (2019) Isolation, characterization, and differentiation of cardiac stem cells from the adult mouse heart. J Vis Exp (143). https://doi.org/10.3791/58448

  • Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684

    CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    CAS  PubMed  Google Scholar 

  • Zhang L, Zou D, Li S, Wang J, Qu Y, Ou S, Jia C, Li J, He H, Liu T, Yang J, Chen Y, Liu Z, Li W (2016) An ultra-thin amniotic membrane as carrier in corneal epitheliumtissue-engineering. Sci Rep 6:21021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ding J, Li HY, Wang ZH, Wu J (2020) Immunotherapy for advanced hepatocellular carcinoma, where are we? Biochim Biophys Acta Rev Cancer 1874(2):188441

    CAS  PubMed  Google Scholar 

  • Zheng YH, Xiong W, Su K, Kuang SJ, Zhang ZG (2013) Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo. Exp Ther Med 5(6):1576–1580

    PubMed  PubMed Central  Google Scholar 

  • Zuliani T, David J, Bercegeay S, Pandolfino M-C, Rodde-Astier I, Khammari A et al (2011) Value of large scale expansion of tumor infiltrating lymphocytes in a compartmentalised gas-permeable bag: Interests for adoptive immunotherapy. J Transl Med 9:63

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Lisini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lisini, D., Frigerio, S., Nava, S., Pogliani, S. (2022). Stem Cell Production: Processes, Practices, and Regulation. In: Khan, F.A. (eds) Stem Cell Production. Springer, Singapore. https://doi.org/10.1007/978-981-16-7589-8_6

Download citation

Publish with us

Policies and ethics