Skip to main content

Animal Lectin

  • Chapter
  • First Online:
Lectins

Abstract

Animal lectins bind to soluble carbohydrates on cell surfaces. The majority of animal lectins are nonenzymatic in activity and usually precipitate glycoconjugates in specific animal cells. It controls protein levels in the blood, modulates cell adhesion to glycoprotein production, and binds soluble extracellular and intracellular glycoproteins. Carbohydrates seen in pathogens that are not recognized by immune system host cells are identified by lectins. Animal lectins have a jelly-like consistency. Animal lectins have a jelly-roll tertiary structure with quaternary connections that vary. P type lectins, C type lectins, I type lectins, Chi lectins, and others are the 15 structural families of animal lectins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAA:

Anguilla anguilla agglutinin

CD-MPR:

Cation-dependent mannose 6-phosphate receptor

CI-MPR:

Cation-independent mannose 6-phosphate receptor

CLRD:

C type lectin-like receptor domain

CRD:

Carbohydrate recognition domain

ERAD:

Endoplasmic reticulum-associated degradation

FTLD:

F type lectin domain

IGF2R:

Insulin-like growth factor 2 receptor

LMAN2:

Lectin, mannose binding 2

LRR:

Leucine-rich repeats

MAG:

Myelin-associated glycoprotein

MCFD2:

Multicoagulation-factor deficiency 2 protein

MDCK:

Madin-Darby canine kidney

SBD:

Sugar binding domain

TGN:

Trans-Golgi network

TIM:

Triose-phosphate isomerase

VIP-36:

Vesicular integral membrane protein-36

XCGL:

Xenopus oocyte cortical granule lectin

XEEL:

Xenopus embryonic cuticular glycoprotein

zINTLs:

Zebrafish intelectins

References

  • Aranda-Souza MA, Rossato FA, Costa RAP, Figueira TR, Castilho RF, Guarniere MC, Nunes ES, Coelho LCBB, Correia MTS, Vercesi AE (2014) Toxicon 82:97

    CAS  PubMed  Google Scholar 

  • Barrett JC et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962. https://doi.org/10.1038/ng.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchet MA, Odom EW, Vasta GR, Amzel LM (2002) A novel fucose recognition fold involved in innate immunity. Nat Struct Biol 9:628–634

    CAS  PubMed  Google Scholar 

  • Brown AC, Harrison LM, Kapulkin W, Jones BF, Sinha A, Savage A, Villalon N, Cappello M (2007) MolBiochem Parasit 151:141

    CAS  Google Scholar 

  • Bussink AP, van Eijk M, Renkema GH et al (2006) The biology of the Gaucher cell: the cradle of human chitinases. Int Rev Cytol 252:71–128

    CAS  PubMed  Google Scholar 

  • Cammarata M, Parisi MG, Benenati G, Vasta GR, Parrinello N (2014) Dev Comp Immunol 44:332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cormier JH, Tamura T, Sunryd JC, Hebert DN (2009) EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 34:627–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    CAS  PubMed  Google Scholar 

  • Du H, Masuko-Hongo K, Nakamura H, Xiang Y, Bao C, Wang XD, Chen SL, Nishioka K, Kato T (2005) The prevalence of autoantibodies against cartilage intermediate layer protein, YKL-39, osteopontin, and cyclic citrullinated peptide in patients with early-stage knee osteoarthritis: evidence of a variety of autoimmune processes. Rheumatol Int 26:35–41

    PubMed  Google Scholar 

  • Endo Y, Liu Y, Kanno K et al (2004) Identification of the mouse H-ficolin gene as a pseudogene and orthology between mouse ficolins A/B and human L-/M-ficolins. Genomics 84:737–744

    CAS  PubMed  Google Scholar 

  • Fusetti F, Pijning T, Kalk KH et al (2003) Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem 278:37753–37760

    CAS  PubMed  Google Scholar 

  • Gowda NM, Goswami U, Khan MI (2008) Fish Shellfish Immun 24:450

    CAS  Google Scholar 

  • Gupta GS (2012) Animal lectins: form, functions and clinical applications. 3:57–75, 4:81–101, 14:313–345, 1:3–5

    Google Scholar 

  • Hauri HP, Nufer O, Breuza L et al (2002) Lectins and protein traffic early in the secretory pathway. Biochem Soc Symp 69:73–82

    CAS  Google Scholar 

  • Ho MS, Tsai PI, Chien CT (2006) F-box proteins: the key to protein degradation. J Biomed Sci 13:181–191

    CAS  PubMed  Google Scholar 

  • Hosokawa N, Wada I, Hasegawa K et al (2001) A novel ER alpha mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houston DR, Recklies AD, Krupa JC et al (2003) Structure and ligand induced conformational change of the 39-kDa glycoprotein from human articular chondrocytes. J Biol Chem 278:30206–30212

    CAS  PubMed  Google Scholar 

  • Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18:2573–2580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1:1–7

    Google Scholar 

  • Knorr T, Obermayr F, Bartnik E, Zien A, Aigner T (2003) YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes. Ann Rheum Dis 62:995–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin B, Cao Z, Su P et al (2009) Characterization and comparative analyses of zebrafish intelectins: highly conserved sequences, diversified structures, and functions. Fish Shellfish Immunol 26:396–405

    CAS  PubMed  Google Scholar 

  • Lindblad-Toh K (2005) Wade CM.2005 Genome sequence, comparative analysis, and haplotype structure of the domestic dog. Nature 438:803–819

    CAS  PubMed  Google Scholar 

  • Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41

    CAS  PubMed  Google Scholar 

  • Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273

    CAS  PubMed  Google Scholar 

  • Liu Z, Zhang Q, Peng H, Zhang W (2012) Animal lectins: potential antitumor therapeutic targets in apoptosis. Appl Biochem Biotechnol 168:629

    CAS  PubMed  Google Scholar 

  • Lu ZH et al (2011) Strain-specific copy number variation in the intelectin locus on the 129-mouse chromosome 1. BMC Genomics 12:110. https://doi.org/10.1186/1471-2164-12-110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mast SW, Moremen KW (2006) Family 47 a-mannosidases in Nglycan processing. Methods Enzymol 415:31–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita M, Fujita T (2001) Ficolins and the lectin complement pathway. Immunol Rev 180:78–85

    CAS  PubMed  Google Scholar 

  • McGreal EP, Martinez-Pomares L, Gordon S (2004) Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol Immunol 41:1109–1121

    CAS  PubMed  Google Scholar 

  • Mizushima T, Yoshida Y, Kumanomidou T et al (2007) Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase. Proc Natl Acad Sci U S A 104:5777–5781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nufer O, Mitrovic S, Hauri HP (2003) Profile-based data base scanning for animal L-type lectins and characterization of VIPL, a novel VIP36-like endoplasmic reticulum protein. J Biol Chem 278:15886–15896

    CAS  PubMed  Google Scholar 

  • Ourth DD, Narra MB, Chung KT (2005) Biochem Bioph Res Co 335:1085

    CAS  Google Scholar 

  • Pemberton AD et al (2004) Innate BALB/c enteric epithelial responses to Trichinella spiralis: inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10 mice. J Immunol 173:1894–1901. https://doi.org/10.4049/jimmunol.173.3.1894

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Gruppi A (2005) Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease. Parasite Immunol 27:103–114

    CAS  PubMed  Google Scholar 

  • Rabinovich GA, Ramhorst RE, Rubinstein N et al (2002) Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ 9:661–670

    CAS  PubMed  Google Scholar 

  • Sanchez-Salgado JL, Pereyra MA, Vivanco-Rojas O, Sierra-Castillo C, Alpuche-Osorno JJ, Zenteno E, Agundis C (2014) Characterization of a lectin from the craysfish Cherax quadricarinatus hemolymph and its effect on hemocytes. Fish Shellfish Immun 39:450

    CAS  Google Scholar 

  • Satoh T, Sato K, Kanoh A et al (2006) Structures of the carbohydrate recognition domain of Ca2+−independent cargo receptors Emp46p and Emp47p. J Biol Chem 281:10410–10419

    CAS  PubMed  Google Scholar 

  • Schrag JD, Bergeron JJM, Li Y, Borisova S, Hahn M, Thomas DY, Cygler M (2001) The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 8:633–644

    CAS  PubMed  Google Scholar 

  • Seelenmeyer C, Wegehingel S, Tews I et al (2005) Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1. J Cell Biol 171:373–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen GL, Husby S, Holmskov U (2007) Surfactant protein A and surfactant protein D variation in pulmonary disease. Immunobiology 212:381

    CAS  PubMed  Google Scholar 

  • Steck E, Breit S, Breusch SJ, Axt M, Richter W (2002) Enhanced expression of the human chitinase 3-like 2 gene (YKL-39) but not chitinase 3-like 1 gene (YKL-40) in osteoarthritic cartilage. Biochem Biophys Res Commun 299(1):109–115

    CAS  PubMed  Google Scholar 

  • Stierstorfer B, Kaltner H, Neumüller C et al (2000) Temporal and spatial regulation of expression of two galectins during kidney development of the chicken. Histochem J 32:325–336

    CAS  PubMed  Google Scholar 

  • Takahashi KG, Kuroda T, Muroga K (2008) Purification and antibacterial characterization of a novel isoform of the Manila clam lectin (MCL-4) from the plasma of the Manila clam, Ruditapes philippinarum. Comp Biochem Phys B 150:45

    Google Scholar 

  • Thijssen VLJL, Poirier F, Baum LG et al (2007) Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood 110:2819–2827

    CAS  PubMed  Google Scholar 

  • Trombetta ES (2003) The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology 13:77R–91R

    CAS  PubMed  Google Scholar 

  • Varki A, Cummings RD, Esko JD et al (2015–2017) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, New York. https://doi.org/10.1101/glycobiology.3e.031

    Book  Google Scholar 

  • Wallis R (2007) Interactions between mannose-binding lectin and MASPs during complement activation by the lectin pathway. Immunobiology 212:289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wangkanont K, Wesener DA, Vidani JA, Kiessling LL, Forest KT (2016) Structures of xenopus embryonic epidermal lectin reveal a conserved mechanism of microbial glycan recognition. J Biol Chem 291:5596–5610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi D, Kawasaki N, Matsuo I et al (2007) VIPL has sugarbinding activity specific for high-mannose-type N-glycans, and glucosylation of the a1,2 mannotriosyl branch blocks its binding. Glycobiology 17:1061–1069

    CAS  PubMed  Google Scholar 

  • Yan J et al (2013) Comparative genomic and phylogenetic analyses of the intelectin gene family: implications for their origin and evolution. Dev Comput Immunol 41:189–199. https://doi.org/10.1016/j.dci.2013.04.016

    Article  CAS  Google Scholar 

  • Yan J, Chen L, Liu Z et al (2018) 2018 the D5 region of the intelectin domain is a new type of carbohydrate recognition domain in the intelectin gene family. Dev Comp Immunol 85:150–160

    CAS  PubMed  Google Scholar 

  • Yang R et al (2003) Cloning of omentin, a new adipocytokine from omental fat tissue in humans. Diabetes 52:1

    Google Scholar 

  • Yoshida M, Tanaka K, Tai T (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–442

    CAS  PubMed  Google Scholar 

  • Yoshida Y, Tokunaga F, Chiba T et al (2003) Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem 278:43877–43884

    CAS  PubMed  Google Scholar 

  • Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6162

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetham Elumalai .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayanan, S., Pallan, A.R., Balakrishnan, A., Paul, E.J., Elumalai, P. (2021). Animal Lectin. In: Elumalai, P., Lakshmi, S. (eds) Lectins. Springer, Singapore. https://doi.org/10.1007/978-981-16-7462-4_5

Download citation

Publish with us

Policies and ethics