Skip to main content

Multiferroic Material Bismuth Ferrite (BFO): Effect of Synthesis

  • Chapter
  • First Online:
Ferrites and Multiferroics

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 609 Accesses

Abstract

This chapter has a focus on multiferroics in particular bismuth ferrite and its production techniques (BiFeO3, BFO). BFO is recognized to be the major ABO3 perovskite-type single-stage compound that has multiferroic at room temperature and is therefore seen as the most encouraging up-and-comer for applications in next-generation storage, information and spintronics. Since, ferroelectric and antiferromagnetic characteristics are included concurrently; BFO has started to draw attention to it. BFO exhibits an electrical and antiferromagnetic ordering of the cycloid spin structure (Tc = 850 °C). In ABO3 multiferroic, bismuth has B sites with Fe3+ ions and 6 neighboring anions of oxygen, forming FeO6 octahedra linked by a sharing of their corners. Unfilled space between FeO6 and the A-site is mainly occupied by the Bi3+ ions. There are numerous methods to synthesize BFO nanoparticles like sol–gel auto-combustion, solid-state, co-precipitation etc. In this chapter, we discuss the various methods of synthesis in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Demetzos, Pharma. Nanotechnol. 142, 702–705 (2016)

    Google Scholar 

  2. R. P. Feynman, Eng. Sci. Mag. 23 (1960)

    Google Scholar 

  3. S. Kamila, Amer. J. Appl. Sci. 10, 876 (2013)

    Article  Google Scholar 

  4. T. Takagi, J. Intel. Mater. Sys. Struct. 1, 149–156 (1990)

    Article  Google Scholar 

  5. R. Nistico, F. Cesano, F. Garello, Inorganic 8(1), 6 (2020)

    Article  CAS  Google Scholar 

  6. J. Valasek, Ferroelectricity 2, 239–244 (1971)

    Article  CAS  Google Scholar 

  7. R. Verma, A. Chauhan, K.M. Batoo, R. Kumar, M. Hadi, E.H. Raslan, Ceram. Inert. 47, 15442–15457 (2021)

    Article  CAS  Google Scholar 

  8. R. Verma, A. Chauhan, K.M. Batoo, M. Hadhi, E.H. Raslan, R. Kumar, M.F. Ijaz, A.K. Assaifan, J. Alloy. Compd. 869, 159520 (2021)

    Google Scholar 

  9. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadhi, O.M. Aldossary, Y.A. Douri, J. Alloy. Compd. 18, 160836 (2021)

    Google Scholar 

  10. G.D. Achenbach, W.J. James, R. Gerson, J. Amer. Ceram. Soc. 50, 437 (1967)

    Article  CAS  Google Scholar 

  11. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  CAS  Google Scholar 

  12. Y. Xu, Ferroelectric Materials and their Applications (North-Holland, Elsevier Science Publisher B. V., 1991), p. 112

    Google Scholar 

  13. A.K. Tagantsev, L.E. Cross, J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer, Berlin Heidelberg New York, 2010)

    Book  Google Scholar 

  14. A. Pramanick, D. Damjanovic, D.E. Daniels, J.C. Nino, J.L. Jones, J. Amer. Ceram. Soc. 94, 293–309 (2011)

    Article  CAS  Google Scholar 

  15. D.M. Marincel, H. Zhang, A. Kumar, S. Jesse, S.V. Kalinin, W.M. Rainforth, Adv. Funct. Mater. 24, 1409 (2014)

    Article  CAS  Google Scholar 

  16. N. Izyumskaya, Y.-I.Alivov, S.-J. Cho, H. Morkoc, H. Lee, Y.-S. Kang, Crit. Rev. Solid State Mater. Sci. 32 (2007)

    Google Scholar 

  17. E.K. Salje, Ferroelastic Mater. Ann. Rev. Mater. Sci. 42, 265–283 (2012)

    Google Scholar 

  18. J.E. Massad, R.C. Smith, J. Intel. Mater. Syst. Struct. 14, 455–471 (2003)

    Article  CAS  Google Scholar 

  19. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  20. M. Čebela, D. Zagorac, K. Batalović, J. Radaković, B. Stojadinović, V. Spasojević, R. Hercigonja, Ceram. Inter. 43, 1256–1264 (2017)

    Article  Google Scholar 

  21. H. Palneedi, V. Annapureddy, S. Priya, Jungho. Actuators 5, 9 (2016)

    Article  Google Scholar 

  22. N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  CAS  Google Scholar 

  23. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)

    Article  CAS  Google Scholar 

  24. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T.H. Arima, Y. Tokura, Nature 426, 55–58 (2003)

    Article  CAS  Google Scholar 

  25. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429, 392–395 (2004)

    Article  CAS  Google Scholar 

  26. D. Khomskii, Physics 2, 20 (2009)

    Article  Google Scholar 

  27. G.A. Smolenskiǐ, V. Yudin, E.S. Sher, Y.E. Stolypin, J. Exp. Theo. Phys. 16, 622 (1963)

    Google Scholar 

  28. R. Seshadri, N.A. Hill, Chem. Mater. 13, 2892–2899 (2001)

    Article  CAS  Google Scholar 

  29. A. Mukherjee, M. Banerjee, S. Basu, M.D. Mukadam, S.M. Yusuf, M. Pal, Mater. Chem. Phys. 162, 140–148 (2015)

    Article  CAS  Google Scholar 

  30. M. Muneeswaran, P. Jegatheesan, N.V. Giridharan, J. Exp. Nanosci. 8, 341–346 (2013)

    Article  CAS  Google Scholar 

  31. R. Verma, A. Chauhan, K.M. Batoo, R. Kumar, M. Hadhi, E.H. Raslan, Ceram. Inter. 47, 3680–3691 (2021)

    Article  CAS  Google Scholar 

  32. D. Carranza-Celis, A. Cardona-Rodríguez, J. Narváez et al., Sci. Rep. 9, 3182 (2019)

    Article  Google Scholar 

  33. S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Adv. Mater. 20, 3692–3696 (2008)

    Article  CAS  Google Scholar 

  34. G.A. Smolenskii, A.I. Agranovskaya, S.N. Popov, V.A. Isupov, Sovt. Phys. Tech. Phys. 10, 2152–2153 (1958)

    Google Scholar 

  35. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  CAS  Google Scholar 

  36. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, J. Appl. Phys. 97, 1–4 (2005)

    Article  Google Scholar 

  37. G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu, Solid State Commun. 138, 76–81 (2006)

    Article  CAS  Google Scholar 

  38. H. Wu, P. Xue, Y. Lu, X. Zhu, J. Alloy. Compd. 731, 471–477 (2018)

    Article  CAS  Google Scholar 

  39. J. Wie, D. Xue, Mater. Res. Bull. 43, 3368–3373 (2008)

    Article  Google Scholar 

  40. D.C. Jia, J.H. Xu, H. Ke, W. Wang, Y. Zhou, J. Eur. Ceram. Soc. 29, 3099–3103 (2009)

    Article  CAS  Google Scholar 

  41. X. Wang, Y.G. Zhang, Z. Wu, Mater. Lett. 64, 486–488 (2010)

    Article  CAS  Google Scholar 

  42. Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, J. Nanomater. 2011, (2011)

    Google Scholar 

  43. H. Ke, W. Wang, Y. Wang, H. Zhang, D. Jia, Y. Zhou, X. Lu, P. Withers, J. Alloy. Compd. 541, 94–98 (2012)

    Article  CAS  Google Scholar 

  44. S. Pillai, D. Bhuwal, T. Shrepatti, V. Shelke, J. Mater. Sci.: Mater. Electron. 24, 2950–2955 (2013)

    CAS  Google Scholar 

  45. C. Fu, X. Long, W. Cai, G. Chen, X. Deng, Ferroelectricity 460, 157–161 (2014)

    Article  CAS  Google Scholar 

  46. S. Godara, N. Sinha, G. Ray, B. Kumar, J. Asia. Ceram. Soc. 2, 416–421 (2014)

    Article  Google Scholar 

  47. S.V. Vijayasundaram, G. Suresh, R. Kanagadurai, Appl. Phys. A 121, 681–688 (2015)

    Article  CAS  Google Scholar 

  48. N.S. Sowmya, A. Srinivas, P. Surresh, A. Shukla, S.V. Kamat, J. Mater. Sci.: Mater. Electron. 26, 5368–5372 (2015)

    CAS  Google Scholar 

  49. A. Manzoor, A.M. Afzal, N. Amin, M.I. Arshad, M. Usman, M.N. Rasool, Ceram. Inter. 42, 11447–11452 (2016)

    Article  CAS  Google Scholar 

  50. G.S. Dias, I.B. Catellani, L.F. Cótica, I.A. Santos, V.F. Freitas, F. Yokaichiya, Integ. Ferro. 174, 43–49 (2016)

    Article  CAS  Google Scholar 

  51. H. Maleki, S. Zare, R. Fathi, J. Supercond. Nov. Mag. 31, 2539–2545 (2018)

    Article  CAS  Google Scholar 

  52. E. Chandrakala, J.P. Paul, A. Kumar, A.R. James, D. Das, J. Amer. Ceram. Soc. 99, 3659–3669 (2016)

    Article  CAS  Google Scholar 

  53. A.K. Moghadam, O. Mirzaee, H. Shokrollahi, S.A. Lavasani, Ceram. Inter. 45, 8087–8094 (2019)

    Article  CAS  Google Scholar 

  54. D.V. Karpinsky, M.V. Silibin, A.V. Trukhanov, A.L. Zhaludkevich, T. Maniecki, W. Maniukiewicz, V. Sikolenko, J.A. Paixão, V.A. Khomchenko, J. Phys. Chem. Solids 126, 164–169 (2019)

    Article  CAS  Google Scholar 

  55. S. Satyanarayana, S.C. Sarma, S.C. Peter, S. Bhattacharya, J. Magn. Magn. Mater. 491, 165–171 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Chancellor Shoolini University for his continuous support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, R., Chauhan, A., Neha, Kumar, R. (2021). Multiferroic Material Bismuth Ferrite (BFO): Effect of Synthesis. In: Bhargava, G.K., Bhardwaj, S., Singh, M., Batoo, K.M. (eds) Ferrites and Multiferroics. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7454-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7454-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7453-2

  • Online ISBN: 978-981-16-7454-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics