Skip to main content

Spine Surgery—Part II: Ceramic and Non-ceramic Bone Substitutes: A Surgical Perspective

  • Chapter
  • First Online:
Innovative Bioceramics in Translational Medicine II

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 18))

  • 354 Accesses

Abstract

Bone grafts have been used for decades to achieve successful bone fusion in spinal surgeries. Autograft is the most effective bone graft due to the properties of osteogenesis, osteoconduction, and osteoinduction. However, autograft may not always be available in sufficient quantities, and harvesting may cause patient morbidity. Various ceramic and non-ceramic bone graft extenders have been introduced to limit the need for autograft harvest. These bone substitutes have rapidly evolved in recent years with technological and industrial advancements. Spinal surgeons should closely follow new trends in this industry to achieve the best outcomes for their patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dimar JR, Glassman SD, Burkus KJ et al (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 31:2534–2539

    Google Scholar 

  2. Epstein NE (2006) A preliminary study of the efficacy of Beta Tricalcium Phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech 19:424–429

    Google Scholar 

  3. Vaccaro AR, Whang PG, Patel T et al (2008) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J 8:457–465

    Google Scholar 

  4. Jorgenson SS, Lowe TG, France J et al (1994) A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine 19:2048–2053

    Google Scholar 

  5. Acebal-Cortina G, Suárez-Suárez MA, García-Menéndez C et al (2011) Evaluation of autologous platelet concentrate for intertransverse lumbar fusion. Eur Spine J 20 Suppl 3:361–366

    Google Scholar 

  6. Dai LY, Jiang LS (2008) Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Spine 33:1299–1304

    Google Scholar 

  7. Kanayama M, Hashimoto T, Shigenobu K et al (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine 31:1067–1074

    Google Scholar 

  8. Chen WJ, Tsai TT, Chen LH et al (2005) The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine 30:2293–2297

    Google Scholar 

  9. Alexander DI, Manson NA, Mitchell MJ (2001) Efficacy of calcium sulfate plus decompression bone in lumbar and lumbosacral spinal fusion: preliminary results in 40 patients. Can J Surg 44:262–266

    Google Scholar 

  10. Khan SN, Fraser JF, Sandhu HS et al (2005) Use of osteopromotive growth factors, demineralized bone matrix, and ceramics to enhance spinal fusion. J Am Acad Orthop Surg 13:129–137

    Google Scholar 

  11. Cinotti G, Patti AM, Vulcano A et al (2004) Experimental posterolateral spinal fusion with porous ceramics and mesenchymal stem cells. J Bone Joint Surg Br 86:135–142

    Google Scholar 

  12. Miller CP, Jegede K, Essig D et al (2012) The efficacies of 2 ceramic bone graft extenders for promoting spinal fusion in a rabbit bone paucity model. Spine 37:642–647

    Google Scholar 

  13. Berven S, Tay BK, Kleinstueck FS et al (2001) Clinical applications of bone graft substitutes in spine surgery: consideration of mineralized and demineralized preparations and growth factor supplementation. Eur Spine J 10 Suppl 2:S169-S177

    Google Scholar 

  14. Nickoli MS, Hsu WK (2014) Ceramic-based bone grafts as a bone grafts extender for lumbar spine arthrodesis: a systematic review. Global Spine J 4:211–216

    Google Scholar 

  15. Hsu CJ, Chou WY, Teng HP et al (2005) Coralline hydroxyapatite and laminectomy-derived bone as adjuvant graft material for lumbar posterolateral fusion. J Neurosurg Spine 3:271–275

    Google Scholar 

  16. Korovessis P, Koureas G, Zacharatos S et al (2005) Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur Spine J 14:630–638

    Google Scholar 

  17. Ploumis A, Albert TJ, Brown Z et al (2010) Healos graft carrier with bone marrow aspirate instead of allograft as adjunct to local autograft for posterolateral fusion in degenerative lumbar scoliosis: a minimum 2-year follow-up study. J Neurosurg Spine 13:211–215

    Google Scholar 

  18. Acharya NK, Kumar RJ, Varma HK et al (2008) Hydroxyapatite-bioactive glass ceramic composite as stand-alone graft substitute for posterolateral fusion of lumbar spine: a prospective, matched, and controlled study. J Spinal Disord Tech 21:106–111

    Google Scholar 

  19. Singh K, Smucker JD, Gill S et al (2006) Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: a prospective CT-scan analysis at one and two years. J Spinal Disord Tech 19:416–423

    Google Scholar 

  20. Park DK, Kim SS, Thakur N et al (2013) Use of recombinant human bone morphogenetic protein-2 with local bone graft instead of iliac crest bone graft in posterolateral lumbar spine arthrodesis. Spine 38:E738-E747

    Google Scholar 

  21. Epstein NE (2008) An analysis of noninstrumented posterolateral lumbar fusions performed in predominantly geriatric patients using lamina autograft and beta tricalcium phosphate. Spine J 8:882–887

    Google Scholar 

  22. Blom AW, Cunningham JL, Hughes G et al (2005) The compatibility of ceramic bone graft substitutes as allograft extenders for use in impaction grafting of the femur. J Bone Joint Surg Br 87:421–425

    Google Scholar 

  23. Turner TM, Urban RM, Gitelis S et al (2003) Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect. Orthopedics 26(5 Suppl):s577–s579

    Google Scholar 

  24. Hadjipavlou AG, Simmons JW, Yang J et al (2000) Plaster of Paris as an osteoconductive material for interbody vertebral fusion in mature sheep. Spine 25:10–15

    Google Scholar 

  25. Sidqui M, Collin P, Vitte C (1995) Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 16:1327–1332

    Google Scholar 

  26. Coetzee AS (1980) Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol 106:405–409

    Google Scholar 

  27. Hurlbert RJ, Alexander D, Bailey S et al (2013) rhBMP-2 for posterolateral instrumented lumbar fusion: a multicenter prospective randomized controlled trial. Spine 38:2139–2148

    Google Scholar 

  28. Jenis LG, Banco RJ (2010) Efficacy of silicate-substituted calcium phosphate ceramic in posterolateral instrumented lumbar fusion. Spine 35:E1058–E1063

    Google Scholar 

  29. Johnsson R, Strömqvist B, Aspenberg P (2002) Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine 27:2654–2661

    Google Scholar 

  30. Kasai Y, Takegami K, Uchida A (2003) Mixture ratios of local bone to artificial bone in lumbar posterolateral fusion. J Spinal Disord Tech 16:31–37

    Google Scholar 

  31. Frantzén J, Rantakokko J, Aro HT et al (2011) Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J Spinal Disord Tech 24:455–461

    Google Scholar 

  32. Lee KB, Taghavi CE, Hsu MS et al (2010) The efficacy of rhBMP-2 versus autograft for posterolateral lumbar spine fusion in elderly patients. Eur Spine J 19:924–930

    Google Scholar 

  33. Carreon LY, Glassman SD, Djurasovic M et al (2009) RhBMP-2 versus iliac crest bone graft for lumbar spine fusion in patients over 60 years of age: a cost-utility study. Spine 34:238–243

    Google Scholar 

  34. Vaccaro AR, Stubbs HA, Block JE (2007) Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics 30:567–570

    Google Scholar 

  35. Sassard WR, Eidman DK, Gray PM et al (2000) Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics 23:1059–1064

    Google Scholar 

  36. Urist MR, Strates BS (2009) The classic: bone morphogenetic protein. Clin Orthop Relat Res 467:3051–3062

    Google Scholar 

  37. Kiely PD, Brecevich AT, Taher F et al (2014) Evaluation of a new formulation of demineralized bone matrix putty in a rabbit posterolateral spinal fusion model. Spine J 14:2155–2163

    Google Scholar 

  38. Hart R, Komzák M, Okál F et al (2014) Allograft alone versus allograft with bone marrow concentrate for the healing of the instrumented posterolateral lumbar fusion. Spine J 14:1318–1324

    Google Scholar 

  39. Chen CL, Liu CL, Sun SS et al (2006) Posterolateral lumbar spinal fusion with autogenous bone chips from laminectomy extended with OsteoSet. J Chin Med Assoc 69:581–584

    Google Scholar 

  40. Odri GA, Hami A, Pomero V et al (2012) Development of a per-operative procedure for concentrated bone marrow adjunction in postero-lateral lumbar fusion: radiological, biological and clinical assessment. Eur Spine J 21:2665–2672

    Google Scholar 

  41. Alsaleh KA, Tougas CA, Roffey DM et al (2012) Osteoconductive bone graft extenders in posterolateral thoracolumbar spinal fusion: a systematic review. Spine 37:E993-E1000

    Google Scholar 

  42. Gupta A, Kukkar N, Sharif K et al (2015) Bone graft substitutes for spine fusion: a brief review. World J Orthop 6:449–456

    Google Scholar 

  43. Dimar JR 2nd, Glassman SD, Burkus JK et al (2009) Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am 91:1377–1386

    Google Scholar 

  44. Epstein NE (2009) Beta tricalcium phosphate: observation of use in 100 posterolateral lumbar instrumented fusions. Spine J 9:630–638

    Google Scholar 

  45. Glassman SD, Dimar JR 3rd, Burkus K et al (2007) The efficacy of rhBMP-2 for posterolateral lumbar fusion in smokers. Spine 32:1693–1698

    Google Scholar 

  46. Glassman SD, Dimar JR, Carreon LY (2005) Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine 30:1694–1698

    Google Scholar 

  47. Dawson E, Bae HW, Burkus JK et al (2009) Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. J Bone Joint Surg Am 91:1604–1613

    Google Scholar 

  48. Arnold PM, Sasso RC, Janssen ME et al (2016) Efficacy of i-Factor bone graft versus autograft in anterior cervical discectomy and fusion: results of the prospective, randomized, single-blinded food and drug administration investigational device exemption study. Spine 41:1075–1083

    Google Scholar 

  49. Vaccaro AR, Anderson DG, Patel T et al (2005) Comparison of OP-1 Putty (rhBMP-7) to iliac crest autograft for posterolateral lumbar arthrodesis: a minimum 2-year follow-up pilot study. Spine 30:2709–2716

    Google Scholar 

  50. Vaccaro AR, Patel T, Fischgrund J et al (2004) A pilot study evaluating the safety and efficacy of OP-1 Putty (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine 29:1885–1892

    Google Scholar 

  51. Buser Z, Brodke DS, Youssef JA et al (2016) Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine 25:509–516

    Google Scholar 

  52. Tuchman A, Brodke DS, Youssef JA et al (2016) Iliac crest bone graft versus local autograft or allograft for lumbar spinal fusion: a systematic review. Global Spine J 6:592–606

    Google Scholar 

  53. Hostin R, O’Brien M, McCarthy I et al (2016) Retrospective study of anterior interbody fusion rates and patient outcomes of using mineralized collagen and bone marrow aspirate in multilevel adult spinal deformity surgery. Clin Spine Surg 29:E384-E388

    Google Scholar 

  54. Morris MT, Tarpada SP, Cho W (2018) Bone graft materials for posterolateral fusion made simple: a systematic review. Eur Spine J 27:1856–1867

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojin Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S., Morris, M.T., Essig, D.A., Cho, W. (2022). Spine Surgery—Part II: Ceramic and Non-ceramic Bone Substitutes: A Surgical Perspective. In: Choi, A.H., Ben-Nissan, B. (eds) Innovative Bioceramics in Translational Medicine II. Springer Series in Biomaterials Science and Engineering, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-16-7439-6_11

Download citation

Publish with us

Policies and ethics