Skip to main content

Diodicity Optimization of Tesla-Type Check Valve Based on Surrogate Modeling Techniques

  • Conference paper
  • First Online:
Advances in Mechanical Design (ICMD 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 111))

Included in the following conference series:

  • 3967 Accesses

Abstract

Check valves are responsible for regulating and controlling the direction of flow in various systems. The Tesla-type check valve (TTCV) is one kind of passive-type check valve with a regulating performance influenced by its fixed geometry. The main evaluation criterion to quantify the regulating performance is diodicity (Di). In this article, aiming for improving the Di, a surrogate-model based methodology is presented for optimizing the geometric parameters of the TTCV. The length of the straight segment of the side-channel, the angle between the side-channel and the main-channel, the angle between the tangent of the inner curve and the main-channel, and channel width are selected as design variables for searching an optimum design. To obtain a suitable surrogate model for this case, different surrogate models, such as polynomial response surface (PRS), Kriging (KRG), support vector regression (SVR), and radial basis function (RBF), which have been widely used for a variety of engineering problems, are compared in this study. A derivative-free global optimum algorithm, the Genetic Algorithm (GA), is adopted for achieving a global optimum. The improvement in TTCV is analyzed and the optimization results are validated to confirm the effectiveness and feasibility of the proposed methodology. It is found that compared with the existing optimum design, the Di of the predicted optimum design still has an improvement of 4.32%. The proposed methodology may facilitate improvements in the design and optimization of the TTCV, thus benefiting the development of fluid transport techniques in micro- or mini-channel systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knutson, A.L., Van de Ven, J.D.: Modelling and experimental validation of the displacement of a check valve in a hydraulic piston pump. Int. J. Fluid Power 17(2), 114–124 (2016)

    Article  Google Scholar 

  2. Nikola, T.: Valvular conduit. U.S. Patent 1329559. 1920-2-3

    Google Scholar 

  3. Forster, F.K., Bardell, R.L., Afromowitz, M.A., et al.: Design, fabrication and testing of fixed-valve micro-pumps. Asme-Publications-Fed 234, 39–44 (1995)

    Google Scholar 

  4. Thompson, S.M., Paudel, B., Jamal, T., et al.: Numerical investigation of multistaged tesla valves. J. Fluids Eng. 136(8), 081102 (2014)

    Google Scholar 

  5. Truong, T.Q., Nguyen, N.T.: Simulation and optimization of tesla valves. Nanotech 1, 178–181 (2003)

    Google Scholar 

  6. Anagnostopoulos, J.S., Mathioulakis, D.S.: Numerical simulation and hydrodynamic design optimization of a tesla-type valve for micropumps. Iasme Trans. (2005)

    Google Scholar 

  7. Zhang, S., Winoto, S.H., Low, H.T.: Performance simulations of Tesla microfluidic valves. Int. Conf. Integr. Commercialization Micro Nanosyst. 42657, 15–19 (2007)

    Google Scholar 

  8. Thompson, S.M., Ma, H.B., Wilson, C.: Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves. Exp. Therm. Fluid. 35(7), 1265–1273 (2011)

    Article  Google Scholar 

  9. Nobakht, A.Y., Shahsavan, M., Paykani, A.: Numerical study of diodicity mechanism in different Tesla-type microvalves. J. Appl. Res. Technol. 11(6), 876–885 (2013)

    Article  Google Scholar 

  10. Mohammadzadeh, K., Kolahdouz, E.M., Shirani, E., et al.: Numerical investigation on the effect of the size and number of stages on the Tesla microvalve efficiency. J. Mech. 29(3), 527–534 (2013)

    Article  Google Scholar 

  11. Thompson, S.M., Jamal, T., Paudel, B.J., et al.: Transitional and turbulent flow modeling in a Tesla valve. ASME Int. Mech. Eng. Congr. Exposition (2013)

    Google Scholar 

  12. de Vries, S.F.D., Florea, D., Homburg, F.G.A., et al.: Design and operation of a Tesla-type valve for pulsating heat pipes. Int. J. Heat Mass Transfer 105, 1–11 (2017)

    Google Scholar 

  13. Porwal, P.R., Thompson, S.M., Walters, D.K., et al.: Heat transfer and fluid flow characteristics in multistaged Tesla valves. Numer. Heat Transfer Part A Appl. 73(6), 347–365 (2018)

    Article  Google Scholar 

  14. Zhi-jiang, J.I.N., Zhi-xin, G.A.O., Min-rui, C.H.E.N., et al.: Parametric study on Tesla valve with reverse flow for hydrogen decompression. Int. J. Hydrogen Energy 43(18), 8888–8896 (2018)

    Article  Google Scholar 

  15. Jin-yuan, Q.I.A.N., Jia-yi, W.U., Zhi-xin, G.A.O., et al.: Hydrogen decompression analysis by multi-stage Tesla valves for hydrogen fuel cell. Int. J. Hydrogen Energy 44(26), 13666–13674 (2019)

    Article  Google Scholar 

  16. Qian, J., Chen, M., Liu, X., et al.: A numerical investigation of the flow of nanofluids through a micro Tesla valve. J. Zhejiang Univ. Sci. A 20(1), 50–60 (2019)

    Google Scholar 

  17. Yang, R.J., Akkerman, A., Anderson, D.F., et al.: Robustness optimization for vehicular crash simulations. Comput. Sci. Eng. 2(6), 8–13 (2000)

    Article  Google Scholar 

  18. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 23(1), 1–13 (2001)

    Article  Google Scholar 

  19. Hussain, M.F., Barton, R.R., Joshi, S.B.: Metamodeling: Radial basis functions, versus polynomials. Eur. J. Oper. Res. 138(1), 142–154 (2002)

    Article  Google Scholar 

  20. Simpson, T.W., Booker, A.J., Ghosh, D., et al.: Approximation methods in multidisciplinary analysis and optimization: A panel discussion. Struct. Multidiscip. Optim. 27(5), 302–313 (2004)

    Article  Google Scholar 

  21. Lanzi, L., Castelletti, L.M.L., Anghileri, M.: Multi-objective optimisation of composite absorber shape under crashworthiness requirements. Compos. Struct. 65(3/4), 433–441 (2004)

    Article  Google Scholar 

  22. Yang, R.J., Gu, L.: Experience with approximate reliability-based optimization methods. Struct. Multidiscip. Optim. 26(1–2), 152–159 (2004)

    Article  Google Scholar 

  23. Yang, R.J., Chuang, C., Gu, L., et al.: Experience with approximate reliability-based optimization methods II: An exhaust system problem. Struct. Multidiscip. Optim. 29(6), 488–497 (2005)

    Article  Google Scholar 

  24. Yang, R.J.: Metamodeling development for vehicle frontal impact simulation. ASME Des. Eng. Tech. Conf. (2001)

    Google Scholar 

  25. Lee, K.H., Kang, D.H.: Structural optimization of an automotive door using the Kriging interpolation method. Proc. Inst. Mech. Eng. Part D J. Automobile Eng. 221(12), 1525–1534 (2007)

    Article  Google Scholar 

  26. Xing-tao, L.I.A.O., Qing, L.I., Xu-jing, Y.A.N.G., et al.: Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct. Multidiscip. Optim. 35(6), 561–569 (2007)

    Google Scholar 

  27. Xing-tao, L.I.A.O., Qing, L.I., Xu-jing, Y.A.N.G., et al.: A two-stage multi-objective optimisation of vehicle crashworthiness under frontal impact. Int. J. Crashworthiness 13(3), 279–288 (2008)

    Article  Google Scholar 

  28. Viana, F.A.C., Haftka, R.T., Steffen, V.: Multiple surrogates: How cross-validation errors can help us to obtain the best predictor. Struct. Multidiscip. Optim. 39(4), 439–457 (2009)

    Article  Google Scholar 

  29. Song, X., Jung, J.H., Son, H.J., et al.: Metamodel-based optimization of a control arm considering strength and durability performance. Comput. Math. Appl. 60(4), 976–980 (2010)

    Google Scholar 

  30. Xue-guan, S.O.N.G., Guang-yong, S.U.N., Guang-yao, L.I., et al.: Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct. Multidiscip. Optim. 47(2), 221–231 (2013)

    Article  MathSciNet  Google Scholar 

  31. Song, X., Lv, L., Li, J., et al.: An advanced and robust ensemble surrogate model: Extended adaptive hybrid functions. J. Mech. Des. (2018)

    Google Scholar 

  32. Tan, H., Wu, L., Wang, M., et al.: Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling. Int. J. Heat Mass Transfer 129(Feb.), 681–689 (2019)

    Google Scholar 

  33. Jin, R., Chen, W., Sudjitanto, A.: On sequential sampling for global metamodeling in engineering design. Det02: ASME Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. (2002)

    Google Scholar 

  34. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response surface methodology: process and product optimization using designed experiments. Wiley (2016)

    Google Scholar 

  35. Sacks, J., Welch, W.J., Mitchell, T.J., et al.: Design and analysis of computer experiments. Stat. Sci. 409–423 (1989)

    Google Scholar 

  36. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  37. Guang-yong, S.U.N., Guang-yao, L.I., Zhi-hui, G.O.N.G., et al.: Radial basis functional model for multi-objective sheet metal forming optimization. Eng. Optim. 43(12), 1351–1366 (2011)

    Article  MathSciNet  Google Scholar 

  38. Han, Z., Zhang, K.: Surrogate-based optimization. In: Real-World Applications of Genetic Algorithms. InTech (2012)

    Google Scholar 

  39. Ozcanan, S., Atahan, A.O.: RBF surrogate model and EN1317 collision safety-based optimization of two guardrails. Struct. Multidiscip. Optim. (2019)

    Google Scholar 

  40. Goel, T., Haftka, R.T., Shyy, W., et al.: Ensemble of surrogates. Struct. Multidiscip. Optim. 33(3), 199–216 (2007)

    Article  Google Scholar 

  41. Wang, G.G., Shan, S.: Review of Metamodeling Techniques in Support of Engineering Design Optimization (2007)

    Google Scholar 

  42. Olsson, A., Sandberg, G., Dahlblom, O.: On Latin hypercube sampling for structural reliability analysis. Struct. Saf. (2003)

    Google Scholar 

  43. Li, W., Peng, X., Xiao, M., et al.: Multi‐objective design optimization for mini‐channel cooling battery thermal management system in an electric vehicle. Int. J. Energy Res. (2019)

    Google Scholar 

  44. Arora, J.S.: Introduction to Optimum Design. Elsevier (2004)

    Google Scholar 

Download references

Acknowledgements

This project is supported by National Key R&D Program of China (Grant No. 2018YFB1700704), National Natural Science Foundation of China (Grant No. 52075068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguan Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, K., Wang, S., Zong, C., Liu, Y., Song, X. (2022). Diodicity Optimization of Tesla-Type Check Valve Based on Surrogate Modeling Techniques. In: Tan, J. (eds) Advances in Mechanical Design. ICMD 2021. Mechanisms and Machine Science, vol 111. Springer, Singapore. https://doi.org/10.1007/978-981-16-7381-8_76

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7381-8_76

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7380-1

  • Online ISBN: 978-981-16-7381-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics