Skip to main content

Biologics in Psoriatic Arthritis

  • Chapter
  • First Online:
Handbook of Biologics for Rheumatological Disorders

Abstract

Psoriatic arthritis (PsA) is a chronic, complex, immune-mediated disease with varied clinical features, including peripheral arthritis, axial disease, enthesitis, dactylitis, skin and nail disease [1, 2]. Treatment of PsA has witnessed a sea change over the past two decades. Extra-articular manifestations including uveitis and inflammatory bowel disease, and comorbidities like obesity, metabolic disease and depression play critical roles in treatment selection. Therapies in PsA warrant tailoring to target the affected domains based on shared decision-making between the treating physicians and patients [3]. There has been a swift and continuing expansion of biologic (b) disease-modifying anti-rheumatic drugs (DMARDs) in the treatment armamentarium of patients with PsA. Significant responses in all the relevant clinical domains, coupled with the ability to inhibit progressive structural damage in the joints, have yielded bDMARDs a clear edge over the conventional (c) DMARDs in most patients with PsA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. New Engl J Med. 2017;376:957–70.

    Article  Google Scholar 

  2. Coates LC, Helliwell PS. Psoriatic arthritis: start of the art review. Clin Med (Lond). 2017;17:65–70.

    Article  Google Scholar 

  3. Coates LC, Kavanaugh A, Mease PJ, Soriano ER, Acosta-Felquer ML, Armstrong AW, et al. Group for research and assessment of psoriasis and psoriatic arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis Rheum. 2016;68:1060–71.

    Google Scholar 

  4. Khanna I, Kozicky O, Fischer H. Use of FDA-approved medications: biologics for psoriatic arthritis in patients at an urban outpatient rheumatology clinic. ACR Open Rheumatol. 2019;12:580–4.

    Article  Google Scholar 

  5. Ruyssen-Witrand A, Perry R, Watkins C, Braileanu G, Kumar G, Kiri S, et al. Efficacy and safety of biologics in psoriatic arthritis: a systematic literature review and network meta-analysis. RMD Open. 2020;6:e001117.

    Article  Google Scholar 

  6. Gladman DD, Orbai A-M, Gome-Reino J, Chang-Douglass S, Leoncini E, Burton HE, et al. Network meta-analysis of tofacitinib, biologic disease-modifying antirheumatic drugs, and apremilast for the treatment of psoriatic arthritis. Curr Ther Res Clin Exp. 2020;93:100601.

    Article  Google Scholar 

  7. Croft M, Siegel RM. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat Rev Rheumatol. 2017;13:217–33.

    Article  CAS  Google Scholar 

  8. Mantravadi S, Ogdie A, Kraft WK. Tumor necrosis factor inhibitors in psoriatic arthritis. Expert Rev Clin Pharmacol. 2017;10:899–910.

    Article  CAS  Google Scholar 

  9. Gossec L, Baraliakos X, Kershchbaumer A, de Wit M, McInnes I, Dougados M, et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann Rheum Dis. 2020;79:680–2.

    Article  Google Scholar 

  10. Mease PJ, Goffe BS, Metz J, VanderStoep A, Finck B, Burge DJ. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet. 2000;356:385–90.

    Article  CAS  Google Scholar 

  11. Mease PJ, Gladman DD, Collier DH, Ritchlin CT, Helliwell PS, Liu L, et al. Etanercept and methotrexate as monotherapy or in combination for psoriatic arthritis: primary results from a randomized, controlled phase III trial. Arthritis Rheumatol. 2019;71:1112–24.

    Article  CAS  Google Scholar 

  12. Antoni CE, Kavanaugh A, Kirkham B, Tutuncu Z, Burmester GR, Schneider U, et al. Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis. Arthritis Rheum. 2005;52:1227–36.

    Article  CAS  Google Scholar 

  13. Antoni C, Krueger GG, de Vlam K, Birbara C, Beutler A, Guzzo C, et al. Infliximab improves signs and symptoms of psoriatic arthritis: results of the IMPACT 2 trial. Ann Rheum Dis. 2005;64:1150–7.

    Article  CAS  Google Scholar 

  14. Mease PJ, Gladman DD, Ritchlin CT, Ruderman EM, Steinfeld SD, Choy EHS, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis. Arthritis Rheum. 2005;52:3279–89.

    Article  CAS  Google Scholar 

  15. Genovese MC, Mease PJ, Thomson GTD, Kivitz AJ, Perdok RJ, Weinberg MA, et al. Safety and efficacy of adalimumab in treatment of patients with psoriatic arthritis who had failed disease modifying antirheumatic drug therapy. J Rheumatol. 2007;34:1040–50.

    CAS  Google Scholar 

  16. Kavanaugh A, McInnes I, Mease P, Krueger GG, Gladman D, Gomez-Reino J, et al. Golimumab, a new human tumor necrosis factor alpha antibody, administered every four weeks as a subcutaneous injection in psoriatic arthritis. Arthritis Rheum. 2009;60:976–86.

    Article  CAS  Google Scholar 

  17. Mease PJ, Fleischmann R, Deodhar AA, Wollenhaupt J, Khraishi M, Kielar D, et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann Rheum Dis. 2014;73:48–55.

    Article  CAS  Google Scholar 

  18. Kavanaugh A, Husni ME, Harrison DD, Kim L, Lo KH, Leu JH, et al. Safety and efficacy of intravenous golimumab in patients with active psoriatic arthritis. Results through week twenty-four of the GO-VIBRANT study. Arthritis Rheum. 2017;69:2151–61.

    Article  CAS  Google Scholar 

  19. Vieira-Sousa E, Alves P, Rodrigues AM, Teixeira F, Tavares-Costa J, Bernardo A, et al. GO-DACT: a phase 3b randomised, double-blind, placebo-controlled trial of golimumab plus methotrexate (MTX) versus placebo plus MTX in improving dactylitis in MTX-naïve patients with psoriatic arthritis. Ann Rheum Dis. 2020;79:490–8.

    Article  CAS  Google Scholar 

  20. Lubrano E, Spadaro A, Marchesoni A, Olivieri I, Scarpa R, D’Angelo S, et al. The effectiveness of a biologic agent on axial manifestations of psoriatic arthritis. A twelve months observational study in a group of patients treated with etanercept. Clin Exp Rheumatol. 2011;29:80–4.

    Google Scholar 

  21. Brahe CH, Ørnbjerg LM, Jacobsson L, Nissen MJ, Kristianslund EK, Mann H, et al. Retention and response rates in 14261 PsA patients started TNF inhibitor treatment – results from 12 countries in EuroSpA. Rheumatology. 2020;59:1640–50.

    Article  CAS  Google Scholar 

  22. Mourad A, Gniadecki R. Treatment of dactylitis and enthesitis in psoriatic arthritis with biologic agents: a systematic review and meta-analysis. J Rheumatol. 2020;47:59–65.

    Article  CAS  Google Scholar 

  23. Goulabchand R, Mouterde G, Barnetche T, Lukas C, Morel J, Combe B. Effect of tumor necrosis factor blockers on radiographic progression of psoriatic arthritis: a systematic review and meta-analysis of randomized controlled trials. Ann Rheum Dis. 2014;73:414–9.

    Article  Google Scholar 

  24. Yang Z, Lin N, Li L, Li Y. The effect of TNF inhibitors on cardiovascular events in psoriasis and psoriatic arthritis: an updated meta-analysis. Clin Rev Allergy Immunol. 2016;51:240–7.

    Article  CAS  Google Scholar 

  25. Fagerli KM, Lie E, van der Heijde D, Heiberg MS, Kalstad S, Rødevand E, et al. Switching between TNF inhibitors in psoriatic arthritis: data from the NOR-DMARD study. Ann Rheum Dis. 2013;72:1840–4.

    Article  CAS  Google Scholar 

  26. Fagerli KM, Kearsley-Fleet L, Watson KD, Packham J, BSRBR-RA Contributors Group, Symmons DPM, et al. Long-term persistence of TNF-inhibitor treatment in patients with psoriatic arthritis. Data from the British society for rheumatology biologics register. RMD Open. 2018;4:e000596.

    Article  Google Scholar 

  27. Clunie G, McInnes IB, Barkham N, Marzo-Ortega H, Patel Y, Gough A, et al. Long-term effectiveness of tumor necrosis factor-α inhibitor treatment for psoriatic arthritis in the UK: a multicentre retrospective study. Rheumatol Adv Pract. 2018;2:rky042.

    Article  Google Scholar 

  28. Vieira-Sousa E, Eusèbio M, Ávila-Ribeiro P, Khmelinskii N, Cruz-Machado R, Rocha TM, et al. Real-world long-term effectiveness of tumor necrosis factor inhibitors in psoriatic arthritis patients from the rheumatic diseases Portuguese register. J Rheumatol. 2020;47:690–700.

    Article  CAS  Google Scholar 

  29. George MD, Baker JF, Ogdie A. Comparative persistence on methotrexate and TNF inhibitors in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J Rheumatol. 2020;47:826–34.

    Article  CAS  Google Scholar 

  30. Ballegaard C, Højgaard P, Dreyer L, Cordtz R, Jørgensen TS, Skougaard M, et al. Impact of comorbidities on tumor necrosis factor inhibitor therapy in psoriatic arthritis: a population-based study. Arthritis Care Res. 2018;70:592–9.

    Article  CAS  Google Scholar 

  31. Li X, Andersen KM, Chang H-Y, Curtis JR, Alexander GC. Comparative risk of serious infections among real-world users of biologics for psoriasis or psoriatic arthritis. Ann Rheum Dis. 2020;79:285–91.

    Article  CAS  Google Scholar 

  32. Cantini F, Niccoli L, Goletti D. Adalimumab, etanercept, infliximab, and the risk of tuberculosis: data from clinical trials, national registries, and postmarketing surveillance. J Rheumatol. 2014;91:47–55.

    CAS  Google Scholar 

  33. Handa R, Upadhyaya S, Kapoor S, Jois R, Pandey BD, Bhatnagar AK, et al. Tubercuosis and biologics in rheumatology: a special situation. Int J Rheum Dis. 2017;20:1313–25.

    Article  Google Scholar 

  34. Kopp TI, Delcoigne B, Arkema EV, Jacobsen RK, Magyari M, Ibfelt EH, et al. Risk of neuroinflammatory events in arthritis patients treated with tumor necrosis factor alpha inhibitors: a collaborative population-based cohort study from Denmark and Sweden. Ann Rheum Dis. 2020;79:566–72.

    Article  CAS  Google Scholar 

  35. Chiu Y-M, Chen D-Y. Infection risk in patients undergoing treatment for inflammatory arthritis: non-biologics versus biologics. Exp Rev Clin Immunol. 2020;16:207–28.

    Article  CAS  Google Scholar 

  36. Lin T-C, Yoshida K, Tedeschi SK, de Abreu MM, Hashemi N, Solomon DH. Risk of hepatitis B reactivation in inflammatory arthritis patients receiving disease modifying anti-rheumatic drugs (DMARDs): a systematic review and meta-analysis. Arthritis Care Res. 2018;70:724–31.

    Article  Google Scholar 

  37. Li SJ, Perez-Chada LM, Merola JF. TNF inhibitor-induced psoriasis: proposed algorithm for treatment and management. J Psoriasis Psoriatic Arthritis. 2019;4:70–80.

    Article  Google Scholar 

  38. Araujo EG, Finzel S, Englbrecht M, Schreiber DA, Faustini F, Hueber A, et al. High incidence of disease recurrence after discontinuation of disease-modifying antirheumatic drug treatment in patients with psoriatic arthritis in remission. Ann Rheum Dis. 2015;74:655–60.

    Article  Google Scholar 

  39. Fong W, Holroyd C, Davidson B, Armstrong R, Harvey N, Dennison E, et al. The effectiveness of a real-life dose reduction strategy for TNF inhibitors in ankylosing spondylitis and psoriatic arthritis. Rheumatology. 2016;55:1837–42.

    Article  CAS  Google Scholar 

  40. Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol. 2019;15:491–501.

    Article  Google Scholar 

  41. McGonagle D, McInnes IB, Kirkham BW, Sherlock J, Moots R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies. Ann Rheum Dis. 2019;78:1167–78.

    Article  CAS  Google Scholar 

  42. Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, van der Heijde D, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373:1329–39.

    Article  CAS  Google Scholar 

  43. McInnes IB, Mease PJ, Kirkham B, Kavanaugh A, Ritchlin CT, Rahman P, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386:1137–46.

    Article  CAS  Google Scholar 

  44. Mease P, van der Heijde D, Landewé R, Mpofu S, Rahman P, Tahir H, et al. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III FUTURE 5 study. Ann Rheum Dis. 2018;77:890–7.

    CAS  Google Scholar 

  45. McInnes IB, Mease PJ, Kivitz AJ, Nash P, Rahman P, Rech J, et al. Long-term efficacy and safety of secukinumab in patients with psoriatic arthritis: 5-year (end-of-study) results from the phase 3 FUTURE 2 study. Lancet Rheumatol. 2020;2:e227–35.

    Article  Google Scholar 

  46. McInnes IB, Behrens F, Mease PJ, Kavanaugh A, Ritchlin C, Nash P, et al. Secukinumab versus adalimumab for treatment of active psoriatic arthritis (EXCEED): a double-blind, parallel-group, randomised, active-controlled, phase 3b trial. Lancet. 2020;395:1496–505.

    Article  CAS  Google Scholar 

  47. Mease PJ, van der Heijde D, Ritchlin CT, Okada M, Cuchacovich RS, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naïve patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis. 2017;76:79–87.

    Article  CAS  Google Scholar 

  48. van der Heijde D, Gladman DD, Kishimoto M, et al. Efficacy and safety of ixekizumab in patients with active psoriatic arthritis: 52-week results from a phase III study (SPIRIT-P1). J Rheumatol. 2018;45:367–77.

    Article  Google Scholar 

  49. Nash P, Kirkham B, Okada M, Rahman P, Combe B, Burmester G-R, et al. Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumor necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial. Lancet. 2017;389:2317–27.

    Article  CAS  Google Scholar 

  50. Mease PJ, Smolen JS, Behrens F, Nash P, Leage SL, Li L, et al. A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naïve patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial. Ann Rheum Dis. 2020;79:123–31.

    Article  CAS  Google Scholar 

  51. Mease PJ, Helliwell PS, Hjuler KF, Raymond K, McInnes I. Brodalumab in psoriatic arthritis: results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann Rheum Dis. 2021;80(2):185–93. https://doi.org/10.1136/annrheumdis-2019-216835.

    Article  CAS  Google Scholar 

  52. Baraliakos X, Coates L, Gossec L, Jeka S, Mera A, Schulz B, et al. Secukinumab improves axial manifestations in patients with psoriatic arthritis and inadequate response to NSAIDs: primary analysis of phase 3 trial (abstract). Arthritis Rheumatol. 2019;71(suppl 10). https://acrabstracts.org/abstract/secukinumab-improves-axial-manifestations-in-patients-with-psoriatic-arthritis-and-inadequate-response-to-nsaids-primary-analysis-of-phase-3-trial/. Accessed 23 Oct 2021.

  53. Baraliakos X, Gossec L, Pournara E, Jeka S, Blanco R, D’angelo S, et al. Secukinumab improves clinical and imaging outcomes in patients with psoriatic arthritis and axial manifestations with inadequate response to NSAIDs: week 52 results from the MAXIMISE trial (abstract). Ann Rheum Dis. 2020;79:35–6.

    Article  Google Scholar 

  54. Mease P, McInnes IB. Secukinumab: a new treatment option for psoriatic arthritis. Rheumatol Ther. 2016;3:5–29.

    Article  Google Scholar 

  55. Coates LC, Wallman JK, McGonagle D, Schett GA, McInnes IB, Mease PJ, et al. Secukinumab efficacy on resolution of enthesitis in psoriatic arthritis: pooled analysis of two phase 3 studies. Arthritis Res Ther. 2019;21:266.

    Article  CAS  Google Scholar 

  56. Oelke KR, Chambenoit O, Majjhoo AQ, Gray S, Higgins K, Hur P. Persistence and adherence of biologics in US patients with psoriatic arthritis: analyses from a claims database. J Comp Eff Res. 2019;8:607–21.

    Article  Google Scholar 

  57. Deodhar A, Mease PJ, McInnes IB, Baraliakos X, Reich K, Blauvelt A, et al. Long-term safety of secukinumab in patients with moderate-to-severe plaque psoriasis, psoriatic arthritis, and ankylosing spondylitis: integrated pooled clinical trial and post-marketing surveillance data. Arthritis Res Ther. 2019;21:111.

    Article  CAS  Google Scholar 

  58. Genovese MC, Mysler E, Tomita T, Papp KA, Salvarani C, Schwartzman S, et al. Safety of ixekizumab in adult patients with plaque psoriasis, psoriatic arthritis and axial spondyloarthritis: data from 21 clinical trials. Rheumatology. 2020;59(12):3834–44. https://doi.org/10.1093/rheumatology/keaa189.

    Article  CAS  Google Scholar 

  59. Sakkas LI, Zafiriou E, Bogdanos DP. Mini review: new treatments in psoriatic arthritis. Focus on the IL-23/17 axis. Front Pharmacol. 2019;10:872.

    Article  CAS  Google Scholar 

  60. Benham H, Norris P, Goodall J, Wechalekar MD, FitzGerald O, Szentpetery A, et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther. 2013;15:R136.

    Article  Google Scholar 

  61. Helliwell PS, Gladman DD, Chakravarty SD, Kafka S, Karyekar CS, You Y, et al. Effects of ustekinumab on spondylitis-associated endpoints in TNFi-naïve active psoriatic arthritis patients with physician-reported spondylitis: pooled results from two phase 3, randomised, controlled trials. RMD Open. 2020;6:e001149.

    Article  Google Scholar 

  62. Araujo EG, Englbrecht M, Hoepken S, Finzel S, Kampylafka E, Kleyer A, et al. Effects of ustekinumab versus tumor necrosis factor inhibition on enthesitis: results from the enthesial clearance in psoriatic arthritis (ECLIPSA) study. Semin Arthritis Rheum. 2019;48:632–7.

    Article  CAS  Google Scholar 

  63. McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382:780–9.

    Article  CAS  Google Scholar 

  64. Ritchlin C, Rahman P, Kavanaugh A, McInnes IB, Puig L, Li S, et al. Efficacy and safety of the anti-IL 12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumor necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73:990–9.

    Article  CAS  Google Scholar 

  65. Iannone F, Santo L, Bucci R, Semeraro A, Carlino G, Paoletti F, et al. Drug survival and effectiveness of ustekinumab in patients with psoriatic arthritis. Real-life data from the biologic Apulian registry (BIOPURE). Clin Rheumatol. 2018;37:667–75.

    Article  Google Scholar 

  66. Ghosh S, Gensler LS, Yang Z, Gasink C, Chakravarty SD, Farahi K, et al. Ustekinumab safety in psoriasis, psoriatic arthritis, and Crohn’s disease: an integrated analysis of phase I/III clinical development programs. Drug Saf. 2019;42:751–68.

    Article  CAS  Google Scholar 

  67. Deodhar A, Helliwell PS, Boehncke W-H, Kollmeier AP, Hsia EC, Subramanian RA, et al. Guselkumab in patients with active psoriatic arthritis who were biologic-naïve or had previously received TNF-α inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395:1115–25.

    Article  CAS  Google Scholar 

  68. Mease PJ, Rahman P, Gottlieb AB, Kollmeier AP, Hsia EC, Xu XL, et al. Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395:1126–36.

    Article  CAS  Google Scholar 

  69. McInnes IB, Rahman P, Gottlieb AB, Hsia EC, Kollmeier AP, Chakravarty SD, et al. Efficacy and safety of guselkumab, an interleukin-23p19-specific monoclonal with psoriatic arthritis previously treated with open-label tofacitinib plus Rheum. 2020; https://doi.org/10.1002/art.41553.

  70. Helliwell P, Gladman DD, Poddubnyy D, Mease PJ, Baraliakos X, Kollmeier A, et al. Efficacy of guselkumab, a monoclonal antibody that specifically binds to the p-19 subunit of IL-23, on endpoints related to axial involvement in patients with active PsA with imaging-confirmed sacroiliitis: week-24 results from two phase 3, randomized, double-blind, placebo-controlled studies (abstract). Ann Rheum Dis. 2020;79:36–7.

    Article  Google Scholar 

  71. Mease PJ, Gottlieb AB, van der Heijde D, FitzGerald O, Johnsen A, Nys M, et al. Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann Rheum Dis. 2017;76:1550–8.

    Article  CAS  Google Scholar 

  72. Mease P, Hall S, FitzGerald O, van der Heijde D, Merola JF, Avila-Zapata F, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377:1537–50.

    Article  CAS  Google Scholar 

  73. Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377:1525–36.

    Article  CAS  Google Scholar 

  74. Nash P, Coates LC, Fleischmann R, Papp KA, Gomez-Reino JJ, Kanik KS, et al. Efficacy of tofacitinib for the treatment of psoriatic arthritis: pooled analysis of two phase 3 studies. Rheumatol Ther. 2018;5:567–82.

    Article  Google Scholar 

  75. Nash P, Mease PJ, Fleishaker D, Wu J, Coates LC, Behrens F, et al. Tofacitinib as monotherapy following methotrexate withdrawal in patients with psoriatic arthritis previously treated with open-label tofacitinib plus methotrexate: a randomised, placebo-controlled sub-study of OPAL balance. Lancet Rheumatol. 2020; https://doi.org/10.1016/S2665-9913(20)30339-8.

  76. Ogdie A, de Vlam K, McInnes IB, Mease PJ, Baer P, Lukic T, et al. Efficacy of tofacitinib in reducing pain in patients with rheumatoid arthritis, psoriatic arthritis or ankylosing spondylitis. RMD Open. 2020;6:e001042.

    Article  Google Scholar 

  77. van der Heijde D, Gladman DD, FitzGerald O, Kavanaugh A, Graham D, Wang C, et al. Raiographic progression according to baseline c-reactive protein levels and other risk factors in psoriatic arthritis treated with tofacitinib or adalimumab. J Rheumatol. 2019;46:1089–96.

    Article  Google Scholar 

  78. Nash P, Coates LC, Kivitz AJ, Mease PJ, Gladman DD, Covarrubias-Cobos J, et al. Safety and efficacy of tofacitinib in patients with active psoriatic arthritis: interim analysis of OPAL balance, an open-label, long-term extension study. Rheumatol Ther. 2020;7:553–80.

    Article  Google Scholar 

  79. Gladman DD, Charles-Schoeman C, McInnes IB, Veale DJ, Thiers B, Nurmohamed M, et al. Changes in lipid levels and incidence of cardiovascular events following tofactinib treatment in patients with psoriatic arthritis: a pooled analysis across phase III and long-term extension studies. Arthritis Care Res. 2019;71:1387–95.

    Article  CAS  Google Scholar 

  80. Yates M, Mootoo A, Adams M, Bechman K, Rampes S, Patel V, et al. Venous thromboembolism risk with JAK inhibitors: a meta-analysis. Arthritis Rheum. 2020; https://doi.org/10.1002/art.41580.

  81. Mease PJ, Lertratanakul A, Anderson JK, Papp K, Van den Bosch F, Tsuji S, et al. Upadacitinib for psoriatic arthritis refractory to biologics: SELECT-PsA 2. Ann Rheum Dis. 2020;80(3):312–20.

    Article  Google Scholar 

  82. McInnes I, Anderson J, Magrey M, Merola JF, Liu Y, Kishimoto M, et al. Efficacy and safety of upadacitinib versus placebo and adalimumab in patients with active psoriatic arthritis and inadequate response to non-biologic disease-modifying anti-rheumatic drugs (SELECT-PsA-1): a double-blind, randomized controlled phase 3 trial (abstract). Ann Rheum Dis. 2020;79:16–7.

    Google Scholar 

  83. Deodhar A, Ranza R, Ganz F, Gao T, Anderson JK, Östör A. Efficacy and safety of upadacitinib in patients with psoriatic arthritis and axial involvement (abstract). Arthritis Rheumatol. 2020;72(suppl 10). https://acrabstracts.org/abstract/efficacy-and-safety-of-upadacitinib-in-patients-with-psoriatic-arthritis-and-axial-involvement/. Accessed 15 Dec 2020.

  84. Mease P, Coates LC, Helliwell PS, Stanislavchuk M, Rychlewska-Hanczewska A, Dudek A, et al. Efficacy and safety of filgotinib, a selective janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392:2367–77.

    Article  CAS  Google Scholar 

  85. Mease P, Deodhar A, van der Heijde D, Behrens F, Kivitz A, Kim J, et al. Efficacy and safety of deucravacitinib (BMS-986165), an oral, selective tyrosine kinase 2 inhibitor, in patients with active psoriatic arthritis: results from a phase 2, randomized, double-blind, placebo-controlled trial (abstract). Arthritis Rheumatol. 2020;72(suppl 10). https://acrabstracts.org/abstract/efficacy-and-safety-of-deucravacitinib-bms-986165-an-oral-selective-tyrosine-kinase-2-inhibitor-in-patients-with-active-psoriatic-arthritis-results-from-a-phase-2-randomized-double-blind-plac/. Accessed 15 Dec 2020.

  86. Kavanaugh A, Mease PJ, Gomez-Reino JJ, Adebajo AO, Wollenhaupt J, Gladman DD, et al. Longterm (52-week) results of a phase III randomized, controlled trial of apremilast in patients with psoriatic arthritis. J Rheumatol. 2015;42:479–88.

    Article  CAS  Google Scholar 

  87. Kavanaugh A, Gladman DD, Edwards CJ, Schett G, Guerette B, Delev N, et al. Long-term experience with apremilast in patients with psoriatic arthritis: 5-year results from a PALACE 1-3 pooled analysis. Arthritis Res Ther. 2019;21:118.

    Article  Google Scholar 

  88. Gladman DD, Kavanaugh A, Gomez-Reino JJ, Wollenhaupt J, Cutolo M, Schett G, et al. Therapeutic benefit of apremilast on enthesiti and dactylitis in patients with psoriatic arthritis: a pooled analysis of the PALACE 1-3 studies. RMD Open. 2018;4:e000669.

    Article  Google Scholar 

  89. Favalli EG, Conti F, Selmi C, Iannone F, Bucci R, D’Onofrio F, et al. Retrospective evaluation of patient profiling and effectiveness of apremilast in an Italian multicentric cohort of psoriatic arthritis patients. Clin Exp Rheumatol. 2020;38:19–26.

    Google Scholar 

  90. Singh JA, Guyatt G, Ogdie A, Gladman DD, Deal C, Deodhar A, et al. 2018 American College of Rheumatology/National Psoriasis Foundation guideline for the treatment of psoriatic arthritis. Arthritis Care Res. 2019;71:2–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Jacob Mathew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, R., Ganapati, A., Mathew, A.J. (2022). Biologics in Psoriatic Arthritis. In: Jain, N., Duggal, L. (eds) Handbook of Biologics for Rheumatological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-7200-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7200-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7199-9

  • Online ISBN: 978-981-16-7200-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics