Skip to main content

Functional Nanomaterials for Food Packaging Applications

  • Chapter
  • First Online:
Food Packaging: The Smarter Way

Abstract

The utilization of nanotechnology in the establishment of innovative food packaging materials has had a significantly remarkable enhancement in the previous years, and researches are expected to have an essential impact on the food packaging market in the coming years. Nanotechnology is the emerging engineering field of functional system at the molecular level and has the potential to play a significant role in agriculture and food security, molecular and cellular biology sensors for pathogen identification, environmental protection and allows designers to change the packaging materials on the molecular level to enhance their desired properties such as mechanical strength, temperature and moisture stability, long durability, gas barrier, and flexibility. Due to the revolution in the food packaging materials, the traditional packaging is being replaced by the active packaging, biochemical improved packaging, physically improved and smart packaging to enhance food quality and safety with the significant use of nanotechnology. The focused application of nanotechnology is utilized in food packaging because of their better balance in processing, characteristics, and overall production cost. Nowadays the country regulations and the market are claiming for sustainable higher performance of the food packages, such as longer shelf life, maximum ways of preserving the food in better conditions and shows lower environmental impact. The most promising approaches to overcome defined problems with success have been significantly achieved by preparing nanotechnology-based food packaging material, for instance, preparing nanocomposites that are based on inorganic nanoparticles and polymer matrix dispersed as reinforcement. The techniques used with high aspect ratio of nanoparticles allow adding new functionalities to traditional packaging materials, for example, antimicrobial activity, control emitter substances, and enhanced gas and water vapor barrier characteristics. The main classification of nanotechnology packaging materials and their significant functions and applications are reviewed in this chapter with safety concerns and future prospective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad E, Zampolli S, Marco S (2007) Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sensors Actuators B Chem 127(1):2–7

    Article  CAS  Google Scholar 

  • Abdulmola NA, Hember MWN, Richardson RK, Morris ER (1996) Effect of xanthan on the small-deformation rheology of crosslinked and uncrosslinked waxy maize starch. Carbohydr Polym 31(1–2):65–78

    Article  Google Scholar 

  • Adame D, Beall GW (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci 42(3–4):545–552

    Article  CAS  Google Scholar 

  • Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36(1–3):22–36

    Article  CAS  Google Scholar 

  • Ahuja T, Mir IA, Kumar D (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28(5):791–805

    Article  CAS  PubMed  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Article  Google Scholar 

  • Arkoun M, Daigle F, Heuzey MC, Ajji A (2017) Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules 22:585

    Article  PubMed Central  Google Scholar 

  • Arora A, Padua GW (2010) Nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Choudhary V, Sharma DK (2011) Effect of clay content and clay/surfactant on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites. J Polym Res 18(4):843–857

    Article  CAS  Google Scholar 

  • Arshak K, Adley C, Moore E, Cunniffe C, Campion M, Harris J (2007) Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sensors Actuators B Chem 126(1):226–231

    Article  CAS  Google Scholar 

  • Asadi G, Mousavi SM (2006) Application of nanotechnology in food packaging. In: 13th world congress of food science & technology, pp 739–739

    Google Scholar 

  • Azlin-Hasim S, Cruz-Romero MC, Cummins E, Kerry JP, Morris MA (2016) The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. J Colloid Interface Sci 461:239–248

    Article  CAS  PubMed  Google Scholar 

  • Baldwin EA, Nisperos MO, Chen X, Hagenmaier RD (1996) Improving storage life of cut apple and potato with edible coating. Postharvest Biol Technol 9(2):151–163

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Chen R, Giannelis EP (1999) Biodegradable organic inorganic hybrids based on poly (L-lactic acid). Polym Mater Sci Eng 81:159–160

    CAS  Google Scholar 

  • Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357

    CAS  Google Scholar 

  • Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34(26):9189–9192

    Article  CAS  Google Scholar 

  • Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7(6):2044–2051

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Brody AL (2006) Nano and food packaging technologies converge. Food Technol (Chicago) 60(3):92–94

    Google Scholar 

  • Brody AL (2007) Case studies on nanotechnologies for food packaging. Food Technol

    Google Scholar 

  • Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J.M. and Giménez, E., 2006. Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. In Macromolecular symposia (233, 1, pp. 191-197). Weinheim: Wiley VCH Verlag

    Google Scholar 

  • Cazón P, Vázquez M (2019) Applications of chitosan as food packaging materials. In: Sustainable agriculture reviews, vol 36. Springer, Cham, pp 81–123

    Google Scholar 

  • Chandra RUSTGI, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contamin 25(3):241–258

    Article  CAS  Google Scholar 

  • Chen B, Evans JR (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr Polym 61(4):455–463

    Article  CAS  Google Scholar 

  • Cheng Q, Li C, Pavlinek V, Saha P, Wang H (2006) Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Appl Surf Sci 252(12):4154–4160

    Article  CAS  Google Scholar 

  • Chiang HM, Xia Q, Zou X, Wang C, Wang S, Miller BJ, Howard PC, Yin JJ, Beland FA, Yu H, Fu PP (2012) Nanoscale ZnO induces cytotoxicity and DNA damage in human cell lines and rat primary neuronal cells. J Nanosci Nanotechnol 12(3):2126–2135

    Article  CAS  PubMed  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry–recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2013) Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem 139(1–4):389–397

    Article  CAS  PubMed  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2014) Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J Agric Food Chem 62(6):1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Doi Y, Steinbuchel A, Chen GQ (2002) Biopolymers, polyesters III—applications and commercial products, vol 4. Wiley-VCH, Weinheim

    Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22

    Article  CAS  PubMed  Google Scholar 

  • Ekrami M, EmamJomeh Z, Mirzakhani M (2014) Physical and mechanical properties of biodegradable edible film obtained from Salep. Iran J Biosyst Eng 45(1):45–51

    Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567(1):1–61

    Article  CAS  PubMed  Google Scholar 

  • Foschi E, Bonoli A (2019) The commitment of packaging industry in the framework of the European strategy for plastics in a circular economy. Admin Sci 9(1):18

    Article  Google Scholar 

  • Galdikas A, Mironas A, Senuliene V, Šetkus A, Zelenin D (2000) Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis. Sensors Actuators B Chem 69:258–265

    Article  CAS  Google Scholar 

  • Galus S, Arik Kibar EA, Gniewosz M, Kra’sniewska K (2020) Novel materials in the preparation of edible films and coatings—A review. Coatings 10:674

    Article  CAS  Google Scholar 

  • Gelover S, Gómez LA, Reyes K, Leal MT (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40(17):3274–3280

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263

    Article  CAS  Google Scholar 

  • Guilbert S, Cuq B, Gontard N (1997) Recent innovations in edible and/or biodegradable packaging materials. Food Addit Contam 14(6–7):741–751

    Article  CAS  PubMed  Google Scholar 

  • Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E (2016) Assessment of the migration potential of nanosilver from nanoparticle-coated low-density polyethylene food packaging into food simulants. Food Addit Contamin A 33(1):167–178

    CAS  Google Scholar 

  • Houtman J, Maisanaba S, Puerto M, Gutiérrez-Praena D, Jordá M, Aucejo S, Jos A (2014) Toxicity assessment of organomodified clays used in food contact materials on human target cell lines. Appl Clay Sci 90:150–158

    Article  Google Scholar 

  • Huang JY, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45(2):187–199

    Article  CAS  Google Scholar 

  • Jha K, Kataria R, Verma J, Pradhan S (2019) Potential biodegradable matrices and fiber treatment for green composites: a review. AIMS Mater Sci 6(1):119–138

    Article  CAS  Google Scholar 

  • Jorda-Beneyto M, Ortuño N, Devis A, Aucejo S, Puerto M, Gutiérrez-Praena D, Houtman J, Pichardo S, Maisanaba S, Jos A (2014) Use of nanoclay platelets in food packaging materials: technical and cytotoxicity approach. Food Addit Contam A 31(3):354–363

    Article  CAS  Google Scholar 

  • Khalil HA, Davoudpour Y, Saurabh CK, Hossain MS, Adnan AS, Dungani R, Paridah MT, Sarker MZI, Fazita MN, Syakir MI, Haafiz MKM (2016) A review on nanocellulosicfibres as new material for sustainable packaging: process and applications. Renew Sust Energ Rev 64:823–836

    Article  Google Scholar 

  • Kim SW, Cha SH (2014) Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer based nanocomposites for food packaging films: effects of nanoclay loading. J Appl Polym Sci, 131(11)

    Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Kravanja G, Primožič M, Knez Ž, Leitgeb M (2019) Chitosan-based (nano) materials for novel biomedical applications. Molecules 24(10):1960

    Article  CAS  PubMed Central  Google Scholar 

  • Kuswandi B (2017) Environmental friendly food nano-packaging. Environ Chem Lett 15(2):205–221

    Article  CAS  Google Scholar 

  • Kuswandi B, Moradi M (2019) Improvement of food packaging based on functional nanomaterial. In: Nanotechnology: applications in energy, drug and food. Springer, Cham, pp 309–344

    Chapter  Google Scholar 

  • Kuswandi B, Wicaksono Y, Jayus AA, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens Instrumen Food Qual Safety 5:137–146

    Article  Google Scholar 

  • Kuswandi BJ, Restanty A, Abdullah A, Heng LY, Ahmad M (2012) A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Contam 25:184

    Article  CAS  Google Scholar 

  • Lee SK, Sheridan M, Mills A (2005) Novel UV-activated colorimetric oxygen indicator. Chem Mater 17(10):2744–2751

    Article  CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zamani R, Rivera Gil P, Pelaz B, Ibáñez M, Cadavid D, Shavel A, Alvarez-Puebla RA, Parak WJ, Arbiol J, Cabot A (2013) CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc 135(19):7098–7101

    Article  CAS  PubMed  Google Scholar 

  • Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sensors Actuators B Chem 107(2):849–855

    Article  CAS  Google Scholar 

  • Lim ST, Hyun YH, Lee CH, Choi HJ (2003) Preparation and characterization of microbial biodegradable poly (3-hydroxybutyrate)/organoclay nanocomposite. J Mater Sci Lett 22(4):299–302

    Article  CAS  Google Scholar 

  • Lin D, Yang Y, Wang J, Yan W, Wu Z, Chen H, Zhang Q, Wu D, Qin W, Tu Z (2020) Preparation and characterization of TiO2-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging. Int J Biol Macromol 154:123–133

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575

    Article  CAS  Google Scholar 

  • Lorz PM, Towae FK, Enke W, Jäckh R, Bhargava N, Hillesheim W (2000) Phthalic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry

    Google Scholar 

  • Lotfi M, Tajik H, Moradi M, Forough M, Divsalar E, Kuswandi B (2018) Nanostructured chitosan/monolaurin film: preparation, characterization and antimicrobial activity against listeria monocytogenes on ultrafiltered white cheese. LWT 92:576–583

    Article  CAS  Google Scholar 

  • Maisanaba S, Pichardo S, Jordá-Beneyto M, Aucejo S, Cameán AM, Jos Á (2014a) Cytotoxicity and mutagenicity studies on migration extracts from nanocomposites with potential use in food packaging. Food Chem Toxicol 66:366–372

    Article  CAS  PubMed  Google Scholar 

  • Maisanaba S, Gutierrez-Praena D, Puerto M, Llana-Ruiz-Cabello M, Pichardo S, Moyano R, Blanco A, Jorda-Beneyto M, Jos A (2014b) In vivo toxicity evaluation of the migration extract of an organomodified clay–poly (lactic) acid nanocomposite. J Toxic Environ Health A 77(13):731–746

    Article  CAS  Google Scholar 

  • Maiti P, Batt C (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Polym Mater Sci Eng 88:58–59

    CAS  Google Scholar 

  • Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2006) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydr Polym 64(4):516–523

    Article  CAS  Google Scholar 

  • Martino V, Ruseckaite R, Jiménez A (2006) Thermal and mechanical characterization of plasticized poly (L-lactide-co-D, L-lactide) films for food packaging. J Therm Anal Calorim 86(3):707–712

    Article  CAS  Google Scholar 

  • Mourdikoudis S, Pallares RM, Thanh NT (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27):12871–12934

    Article  CAS  PubMed  Google Scholar 

  • Murariu M, Da Silva Ferreira A, Alexandre M, Dubois P (2008) Polylactide (PLA) designed with desired end use properties: 1. PLA compositions with low molecular weight ester like plasticizers and related performances. Polym Adv Technol 19(6):636–646

    Article  CAS  Google Scholar 

  • Nachay K (2007) Analyzing nanotechnology. Food Technol 61(1):34–36

    Google Scholar 

  • Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine 6:1833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly (l-lactide) clay blend. J Polym Sci B Polym Phys 35(2):389–396

    Article  CAS  Google Scholar 

  • Oliva J, Payá P, Cámara MÁ, Barba A (2007) Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: effects of clarification and filtration processes. J Environ Sci Health 42(7):775–781

    Article  CAS  Google Scholar 

  • Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CS (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287(8):553–558

    Article  CAS  Google Scholar 

  • Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids part I mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915

    Article  CAS  Google Scholar 

  • Pehanich M (2006) Small gains in processing, packaging. Food Proc 11:46–48

    Google Scholar 

  • Pitt CG, Chasalow FI, Hibionada YM, Klimas DM, Schindler A (1981) Aliphatic polyesters. I. The degradation of poly (€-caprolactone) in vivo. J Appl Polym Sci 26(11):3779–3787

    Article  CAS  Google Scholar 

  • Qasim U, Osman AI, Ala’a H, Farrell C, Al-Abri M, Ali M, Vo DVN, Jamil F, Rooney DW (2020) Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: a review. Environ Chem Lett 19:613–641

    Article  Google Scholar 

  • Radhakrishnan Y, Gopal G, Lakshmanan CC, Nandakumar KS (2015) Chitosan nanoparticles for generating novel systems for better applications: a review. Mol Genet Med 9:1–10

    Google Scholar 

  • Rana AK, Frollini E, Thakur VK (2021) Cellulose nanocrystals: pretreatments, preparation strategies, and surface functionalization. Int J Biol Macromol 182:1554–1581

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran R (2009) Nanoparticles in drug delivery: potential green nano biomedicine applications. Int J Green Nanotechnol Biomed 1(2):B108–B130

    Google Scholar 

  • Reynolds G (2007) FDA recommends nanotechnology research, but not labelling food production. Daily.com News

    Google Scholar 

  • Rezaei M, Pirsa S, Chavoshizadeh S (2020) Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater 30(7):2654–2665

    Article  CAS  Google Scholar 

  • Roberts R (2007) The role of nanotechnology in brand protection. Packag Dig

    Google Scholar 

  • Sa NMSM, Mattos ALA, Silva LMA, Brito ES, Rosa MF, Azeredo HMC (2020) From cashew byproducts to biodegradable active materials: bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. Int J Biol Macromol 161:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nanocorporate paradigm: nanotechnology and the transformation of nature, food and agrifood systems. Int J Sociol Food Agric 15(2):22–44

    Google Scholar 

  • Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 37(5):582–593

    Article  CAS  PubMed  Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782

    Article  CAS  Google Scholar 

  • Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    Article  CAS  Google Scholar 

  • Sperber WH (2009) Introduction to the microbiological spoilage of foods and beverages. In: Compendium of the microbiological spoilage of foods and beverages. Springer, New York, pp 1–40

    Chapter  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Article  CAS  Google Scholar 

  • Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR (2012) Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol 810:183–205

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Alavi S, Herald TJ (2008) Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chem 85(3):433–439

    Article  CAS  Google Scholar 

  • Tortora M, Vittoria V, Galli G, Ritrovati S, Chiellini E (2002) Transport properties of modified montmorillonite-poly (ε-caprolactone) nanocomposites. Macromol Mater Eng 287(4):243–249

    Article  CAS  Google Scholar 

  • Vasile C (2018) Polymeric nanocomposites and nano coatings for food packaging: a review. Materials 11(10):1834

    Article  PubMed Central  Google Scholar 

  • Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC, Nilsen-Nygaard J, Pettersen MK, Freire CSR (2018) A concise guide to active agents for active food packaging. Trends Food Sci Technol 80:212–222

    Article  CAS  Google Scholar 

  • von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit Contam A 30(3):612–620

    Article  Google Scholar 

  • Wang L, Kwok SK, Ip WH (2010) A radio frequency identification and sensor-based system for the transportation of food. J Food Eng 101(1):120–129

    Article  Google Scholar 

  • Wang C, Chang T, Dong S, Zhang D, Ma C, Chen S, Li H (2020) Biopolymer films based on chitosan/potato protein/linseed oil/ZnO NPs to maintain the storage quality of raw meat. Food Chem 332:127375

    Article  CAS  PubMed  Google Scholar 

  • Weber CJ (2000) Biobased packaging materials for the food industry. The Royal Veterinary and Agricultural University, pp 1–69

    Google Scholar 

  • Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Starch films reinforced with mineral clay. Carbohydr Polym 52(2):101–110

    Article  CAS  Google Scholar 

  • Xiao Y, Liu Y, Kang S, Wang K, Xu H (2020) Development and evaluation of soy protein isolate-based antibacterial nanocomposite films containing cellulose nanocrystals and zinc oxide nanoparticles. Food Hydrocoll 106:105898

    Article  CAS  Google Scholar 

  • Xiao-e L, Green AN, Haque SA, Mills A, Durrant JR (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A Chem 162(2–3):253–259

    Article  Google Scholar 

  • Yadav S, Mehrotra GK, Dutta PK (2021) Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem 334:127605

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz Atay H (2020) Antibacterial activity of chitosan-based systems. Funct Chitosan 457–489

    Google Scholar 

  • Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, Zhao B (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263(1):81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SY, Deng Y (2006) Clay–starch composites and their application in papermaking. J Appl Polym Sci 100(2):1032–1038

    Article  CAS  Google Scholar 

  • Zhang H, Liang Y, Li X, Kang H (2020) Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices. Meat Sci 166:108137

    Article  CAS  PubMed  Google Scholar 

  • Zubair M, Arshad M, Pradhan RA, Ullah A (2020) Chapter 20—Chitosan/chitin-based composites for food packaging applications. In: Gopi S, Thomas S, Pius A (eds) Handbook of chitin and chitosan. Elsevier, Amsterdam, pp 641–670. isbn:978-0-12-817966-6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Umrao, D., Srivastava, A. (2022). Functional Nanomaterials for Food Packaging Applications. In: Shukla, A.K. (eds) Food Packaging: The Smarter Way. Springer, Singapore. https://doi.org/10.1007/978-981-16-7196-8_10

Download citation

Publish with us

Policies and ethics