Skip to main content

Low Energy Cements Prepared from Modified SO3 Doped Clinkers

  • Conference paper
  • First Online:
CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure

Abstract

Clinkers doped with optimized combinations of SO3 and Li2O or CuO or MgO were synthetized in laboratory furnace at 1350 °C. Clinkers were characterized by light and scanning electron microscopy. Chemical and phase composition of clinkers is discussed with respect to early hydration properties of cements. Hydration of cement pastes was monitored by isothermal calorimetry and reaction kinetics correlated with early strengths. Flexural and compressive strengths of cements were determined after 2, 7, 28, 90 and 365 days of hydration according to EN 196 on mortars. At high CuO contents, Cu-rich phases form inclusions in C2S. The limited incorporation of MgO into the structure of clinker phases is represented in the form of inclusions in C3S. Due to formation of Cu(OH)2, hydration slows down significantly, while Li salts accelerate early hydration. For the studied modified SO3 doped cements, there is a good correlation between heat development during the first 2 days and strength development during 1 year. Proposed four low-energy cements based on SO3 doped clinkers burned at 100 °C lower temperature meet the requirement for CEM I strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staněk, T., Sulovský, P.: Active low-energy belite cement. Cem. Concr. Res. 68, 203–210 (2015). https://doi.org/10.1016/j.cemconres.2014.11.004.

    Article  Google Scholar 

  2. Scrivener, K.L., John, V.M., Gartner, E.M.: Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26 (2018). https://doi.org/10.1016/j.cemconres.2018.03.015.

    Article  Google Scholar 

  3. Li, X., Xu, W., Wang, S., Tang, M., Shen, X.: Effect of SO3 and MgO on Portland cement clinker: Formation of clinker phases and alite polymorphism. Constr. Build. Mater. 58, 182–192 (2014). https://doi.org/10.1016/j.conbuildmat.2014.02.029.

    Article  Google Scholar 

  4. Cuesta, A., Ayuela, A., Aranda, M.A.G.: Belite cements and their activation. Cem. Concr. Res. 140, 106319 (2021). https://doi.org/10.1016/j.cemconres.2020.106319.

    Article  Google Scholar 

  5. Bhatty, J.I.: Role of Minor Elements in Cement Manufacture and Use (1995).

    Google Scholar 

  6. Wang, J., Qian, C., Qu, J., Guo, J.: Effect of lithium salt and nano nucleating agent on early hydration of cement based materials. Constr. Build. Mater. 174, 24–29 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.073.

    Article  Google Scholar 

  7. Kolovos, K., Tsivilis, S., Kakali, G.: SEM examination of clinkers containing foreign elements. Cem. Concr. Compos. 27, 163–170 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.003.

    Article  Google Scholar 

  8. Deng, Q., Zhao, M., Rao, M., Wang, F.: Effect of CuO-doping on the hydration mechanism and the chloride-binding capacity of C4AF and high ferrite Portland clinker. Constr. Build. Mater. 252, 119119 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119119.

    Article  Google Scholar 

  9. Kakali, G., Tsivilis, S., Tsialtas, A.: Hydration of ordinary Portland cements made from raw mix containing transition element oxides (1998). https://doi.org/10.1016/S0008-8846(97)00250-0.

    Article  Google Scholar 

  10. Ma, X.W., Chen, H.X., Wang, P.M.: Effect of CuO on the formation of clinker minerals and the hydration properties. Cem. Concr. Res. 40, 1681–1687 (2010). https://doi.org/10.1016/j.cemconres.2010.08.009.

    Article  Google Scholar 

  11. de Souza, V.C.G., Koppe, J.C., Costa, J.F.C.L., Vargas, A.L.M., Blando, E., Hübler, R.: The influence of mineralogical, chemical and physical properties on grindability of commercial clinkers with high MgO level. Cem. Concr. Res. 38, 1119–1125 (2008). https://doi.org/10.1016/j.cemconres.2008.02.011.

    Article  Google Scholar 

  12. Taylor, H.F.W.: Cement chemistry. T. Telford, London (1997). https://doi.org/10.1680/cc.25929.

  13. Crumbie, A., Walenta, G., Füllmann, T.: Where is the iron? Clinker microanalysis with XRD Rietveld, optical microscopy/point counting, Bogue and SEM-EDS techniques. Cem. Concr. Res. 36, 1542–1547 (2006). https://doi.org/10.1016/j.cemconres.2006.05.031.

    Article  Google Scholar 

  14. Campbell, D.H.: Microscopical examination of Portland cement clinker (1943). https://doi.org/10.1016/s0016-0032(43)91488-7.

    Article  Google Scholar 

  15. Maki, I., Goto, K.: Factors influencing the phase constitution of alite in portland cement clinker. Cem. Concr. Res. 12, 301–308 (1982). https://doi.org/10.1016/0008-8846(82)90078-3.

    Article  Google Scholar 

  16. Maki, I., Kato, K.: Phase identification of alite in portland cement clinker, https://linkinghub.elsevier.com/retrieve/pii/000888468290103X (1982). https://doi.org/10.1016/0008-8846(82)90103-X.

  17. Zhou, H., Gu, X., Sun, J., Yu, Z., Huang, H., Wang, Q., Shen, X.: Research on the formation of M1-type alite doped with MgO and SO3—A route to improve the quality of cement clinker with a high content of MgO (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.078.

  18. Yamashita, M., Tanaka, H., Sakai, E., Tsuchiya, K.: Mineralogical study of high SO3 clinker produced using waste gypsum board in a cement kiln. Constr. Build. Mater. 217, 507–517 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.098.

    Article  Google Scholar 

  19. Emanuelson, A., Hansen, S., Viggh, E.: A comparative study of ordinary and mineralised Portland cement clinker from two different production units: Part I: Composition and hydration of the clinkers. Cem. Concr. Res. 33, 1613–1621 (2003). https://doi.org/10.1016/S0008-8846(03)00115-7.

    Article  Google Scholar 

  20. Morsli, K., de la Torre, Á.G., Zahir, M., Aranda, M.A.G.: Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers. Cem. Concr. Res. 37, 639–646 (2007). https://doi.org/10.1016/j.cemconres.2007.01.012.

    Article  Google Scholar 

  21. Kakali, G., Parissakis, G., Bouras, D.: A study on the burnability and the phase formation of pc clinker containing Cu oxide (1996). https://doi.org/10.1016/0008-8846(96)00143-3.

    Article  Google Scholar 

  22. Tao, Y., Zhang, W., Li, N., Wang, F., Hu, S.: Predicting Hydration Reactivity of Cu-Doped Clinker Crystals by Capturing Electronic Structure Modification. ACS Sustain. Chem. Eng. 7, 6412–6421 (2019). https://doi.org/10.1021/acssuschemeng.9b00327.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to project No. 19-05762S financed by the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Boháč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boháč, M., Staněk, T., Kubátová, D., Novotný, R., Khongová, I., Zezulová, A. (2022). Low Energy Cements Prepared from Modified SO3 Doped Clinkers. In: Ha-Minh, C., Tang, A.M., Bui, T.Q., Vu, X.H., Huynh, D.V.K. (eds) CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure. Lecture Notes in Civil Engineering, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-16-7160-9_75

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7160-9_75

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7159-3

  • Online ISBN: 978-981-16-7160-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics