Skip to main content

Synthesis Biomaterials in Biomedical Applications

  • Chapter
  • First Online:
Functional Biomaterials

Abstract

Biomaterials can be thought of as materials designed to interact with biological systems to evaluate, treat, and replace body tissues. Generally, biomaterials were usually derived from natural sources, like collagen, gelatin, and cotton. Polymer biomaterials are used in various biomedical applications, in which the polymer stays in close contact with cells and tissues for a long time. Although many polymer materials have been tested for different applications, it is recognized that the current range of biomaterials available will not be adequate for the large range of tissue engineering applications such as artificial organs and drug delivery. Synthetic polymers have inherent advantages and disadvantages in the biomedical field they can distribute molecular weights and monomers in different ways. The choice of biomaterials plays an essential role in the design of biomedical products. Although the classic selection criteria for stable and safe implants determine the choice of passive inert materials, any such device can now trigger a cellular response. The chapter describes various polymer biomaterials for drug delivery and tissue engineering synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

Adenosine deaminase asparaginase

AgSD:

Silver sulfadiazine

AuNPs:

Gold nanoparticle

CNT:

Carbon nanotubes

CONA:

Concanavalin

Cp:

Cloud point

CP:

Conducting polymer

CTA:

Chain transfer agent

DDT:

dl-dithiothreitol

DOX:

Doxorubicin

DVS:

Divinyl sulfate

ECM:

Extracellular matrix

EPC:

Endothelial progenitor cells

FDA:

Food and Drug Administration

FGF:

Fibroblast growth factor

FITC:

Fluorescein isothiocyanate

GSH:

Glutathione

HA:

Hyaluronic acid

HAEC:

Human aortic endothelial cells

HDAC 1:

Histone DeACetylase

HEMA:

Hexamethylenediisocyanate

ICP:

Interfacial polyelectrolyte complex

LBL:

Layer by layer

LCST:

Lower critical solution temperature

LEMS:

Light-emitting diods

LGFC:

Lysozyme-stabilized gold fluorescent cluster

MBTTC:

Methyl 2((((Butylthio) carbonothioyl)thio)propanoate)

MMT:

Montmorillonite

NF:

Nanofiber

NIR:

Near infrared

NP:

Nanoparticle

NPM:

(N-methyl pyrolidone)

PAA:

(Polyacrylic acid)

PAAC:

(Propyl acrylic acid)

PAH:

(Poly(allylamine hydrochloride))

PAMAM:

(Poly(amidoamine))

PANI:

(Polyaniline)

PCL:

(Polycaprolactone)

PDADMAC:

Poly(diallyldimethyl ammonium)

PDGF:

Platelet-derived growth factor

PDLLA:

(Poly(d,l-lactic acid))

PDMAPAAM:

Poly(N,N-dimethylaminopropyl acrylamide)

PECs:

(Polyelectrolyte complex)

PEG:

(Polyethylene glycol)

PEGDA:

(Poly(ethylene glycol) diacrylate)

PEGMA:

(Poly(ethylene glycol) methacrylate)

PEO:

(Polyethylene oxide)

PEO-GMA-DEA:

Poly(ethylene oxide)-block-glycerol monimethacrylate-block-(dimethylamino ethyl methacrylate)

PEO-HEMA-DEA:

Poly(ethylene oxide-block-2-hydroxyethyl methacrylate-block-2-(dimethylamino ethyl methacrylate))

PgA:

(Polygalacturonic acid)

PGA:

(Polyglutamic acid)

PGA:

(Polyglycolide)

PLA:

(Polylactide)

PLGA:

(Poly(lactic acid-co-glycolic acid))

PLLA:

(Poly l-lactic acid)

PMAC:

(Polymethacrylic acid)

PNIPAM:

Poly(N-isopropylacrylamide)

POC:

Point of care

PPO:

(Polypropylene oxide)

PPV:

(Poly(para-phenylene vinylene))

PPy:

(Polypyrrole)

PT:

(Poly thiophene)

PVA:

(Polyvinyl alcohol)

PVP:

(Polyvinyl pyrrolidone)

QY:

Quantum yield

SCL:

Shell cross link

SE:

Silicon tube

SPR:

Surface plasmon resonance

SWCNTs:

Single-walled carbon nanotubes

ZnO:

Zinc oxide

ZoI:

Zone of inhabitation

References

  • Agnihotri S, Mukherji S, Mukherji SJRA (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974 –3983

    Article  CAS  Google Scholar 

  • Ahmadi Z, Afshar TF, Mohammadi N, Nazok DH, Haji SSM (2005) Effect of electron beam radiation on morphology and properties of ps/pvme two phase blends. Iran Polym J 55:23 –32

    Google Scholar 

  • Ahmadi Z, Chauhan NPS, Zarrintaj P, Khiabani AB, Saeb MR, Mozafari M (2019) Experimental procedures for assessing electrical and thermal conductivity of polyaniline. In: Fundamentals and emerging applications of polyaniline. Elsevier, Amsterdam

    Google Scholar 

  • Akhavan O, Ghaderi EJY, Wei W, Yue Z, Wang B, Luo N, Gao Y, Ma D, Ma G, Su Z (2012) The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33(16):4013–4021

    Article  Google Scholar 

  • An SY, Hong SH, Tang C, Oh JKJPC (2016) Rosin-based block copolymer intracellular delivery nanocarriers with reduction-responsive sheddable coronas for cancer therapy. Polym Chem 7:4751 –4760

    Article  CAS  Google Scholar 

  • Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue. Acta Biomater 2:7

    Google Scholar 

  • Borden M, Attawia M, Khan Y, Laurencin CT (2002) Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials 23:551 –559

    Article  CAS  PubMed  Google Scholar 

  • Campbell T, Hodgson A, Wallace GJE (1999) Incorporation of erythrocytes into polypyrrole to form the basis of a biosensor to screen for rhesus (d) blood groups and rhesus (d) antibodies. Int J Heat Fluid Flow 11:215 –222

    CAS  Google Scholar 

  • Cao Y, He W (2010) Synthesis and characterization of glucocorticoid functionalized poly (n-vinyl pyrrolidone): a versatile prodrug for neural interface. Biomacromolecules 11:1298 –1307

    Article  CAS  PubMed  Google Scholar 

  • Chang H-H, Wang Y-L, Chiang Y-C, Chen Y-L, Chuang Y-H, Tsai S-J, Heish K-H, Lin F-H, Lin C-P (2014) A novel chitosan-γpga polyelectrolyte complex hydrogel promotes early new bone formation in the alveolar socket following tooth extraction. PLoS One 9:e92362

    Article  PubMed  PubMed Central  Google Scholar 

  • Cioffi N, Rai M (2012) Nano-antimicrobials: progress and prospects. Springer, New York

    Book  Google Scholar 

  • Dawin TP, Ahmadi Z, Taromi F (2018) Bio-based solution-cast blend films based on polylactic acid and polyhydroxybutyrate: influence of pyromellitic dianhydride as chain extender on the morphology, dispersibility, and crystallinity. Prog Org Coat 119:23 –30

    Article  CAS  Google Scholar 

  • De Las Heras Alarcón C, Pennadam S, Alexander CJCSR (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276 –285

    Article  PubMed  Google Scholar 

  • De Ruiter GC, Malessy MJ, Yaszemski MJ, Windebank AJ, Spinner RJ (2009) Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 26:E5

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. J Polymer Sci 2011:1 –19

    Google Scholar 

  • Doshi J, Reneker DHJ (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151 –160

    Article  CAS  Google Scholar 

  • Ebrahimi Jahromi HR, Bakhshandeh GR, Ebrahimi Jahromi A, Saeb MR, Ahmadi Z, Pakdel ASJ (2017) A comparative study to assess structure–properties relationships in (acrylonitrile butadiene rubber)-based composites: recycled microfillers versus nanofillers. J Vinyl Addit Technol 23:13 –20

    Article  CAS  Google Scholar 

  • Fabbro A, Bosi S, Ballerini L, Prato M (2012) Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. ACS Chem 3:611 –618

    CAS  Google Scholar 

  • Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, Jensen J, Sabolinski M, Hardin-Young J (1998) The human skin equivalent investigators group. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch Dermatol 134:293 –300

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Zhang Y, Yan S, Liu Z, He S, Cui L, Yin J (2014) Poly (l-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater 10:276 –288

    Article  CAS  PubMed  Google Scholar 

  • Freed LE, Vunjak-Novakovic G (1998) Culture of organized cell communities. Drug Deliv Rev 33:15 –30

    Article  CAS  Google Scholar 

  • Gao Y, Voigt A, Zhou M, Sundmacher K (2008) Synthesis of single-crystal gold nano-and microprisms using a solvent-reductant-template ionic liquid. Wiley, London

    Book  Google Scholar 

  • Guenet J-M (1992) Thermoreversible gelation of polymers and biopolymers. Academic Press, Amsterdam

    Google Scholar 

  • Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876 –921

    Article  CAS  Google Scholar 

  • Heller JJ (1988) Chemically self-regulated drug delivery systems. J Control Release 8:111 –125

    Article  CAS  Google Scholar 

  • Huang C-C, Chiang C-K, Lin Z-H, Lee K-H, Chang H-T (2008) Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal Chem 80:1497 –1504

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Li X, Smyth K, Serpe MJ (2013) Polymer-based muscle expansion and contraction. Cellul 52:10330 –10333

    CAS  Google Scholar 

  • Kabanov V (2003) Fundamentals of polyelectrolyte complexes in solution and the bulk. Wiley, London

    Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes. Langmuir 24:6409 –6413

    Article  CAS  PubMed  Google Scholar 

  • Kara S (2012) A roadmap of biomedical engineers and milestones, BoD–Books on Demand

    Google Scholar 

  • Karami S, Nazockdast H, Ahmadi Z, Rabolt JF, Noda I, Chase DB (2019) Microstructure effects on the rheology of nanoclay-filled phb/ldpe blends. Polym Compos 40:4125 –4134

    Article  CAS  Google Scholar 

  • Kathuria N, Tripathi A, Kar KK, Kumar A (2009) Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering. Acta Biomater 5:406 –418

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) Ph-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Funct Mater 21:3508 –3515

    Article  CAS  Google Scholar 

  • Keshmarzi MK, Daryakenari AA, Omidvar H, Javanbakht M, Ahmadi Z, Delaunay J-J, Badrnezhad RJ (2019) Pulsed electrophoretic deposition of nanographitic flake-nanostructured co 3o4 layers for efficient lithium-ion-battery anode. J Alloys Compd 805:924 –933

    Article  CAS  Google Scholar 

  • Langone F, Lora S, Veronese FM, Caliceti P, Parnigotto PP, Valenti F, Palma G (1995) Peripheral nerve repair using a poly (organo) phosphazene tubular prosthesis. Biomaterials 16:347 –353

    Article  CAS  PubMed  Google Scholar 

  • Laurencin C, Attawia M, Lu L, Borden M, Lu H, Gorum W, Lieberman J (2001) Poly (lactide-co-glycolide)/hydroxyapatite delivery of bmp-2-producing cells: a regional gene therapy approach to bone regeneration. Biomaterials 22:1271 –1277

    Article  CAS  PubMed  Google Scholar 

  • Laurencin CT, Attawia MA, Elgendy HE, Herbert KM (1996) Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices. Bone 19:S93–S99

    Article  Google Scholar 

  • Lee PI, Good WR (1987) Overview of controlled-release drug delivery

    Book  Google Scholar 

  • Lehr C-M, Bouwstra JA, Boddé HE, Junginger HE (1992) A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids. Pharm Res 9:70 –75

    Article  CAS  PubMed  Google Scholar 

  • Lina F, Yue Z, Jin Z, Guang Y (2011) Bacterial cellulose for skin repair materials. Front Biomed Technol 2011:249 –274

    Google Scholar 

  • Magnusson JP, Saeed AO, Fernández-Trillo F, Alexander C (2011) Synthetic polymers for biopharmaceutical delivery. Polym Chem 2:48 –59

    Article  CAS  Google Scholar 

  • Maji S, Cesur B, Zhang Z, De Geest BG, Hoogenboom R (2016) Poly (n-isopropylacrylamide) coated gold nanoparticles as colourimetric temperature and salt sensors. Polym Chem 7:1705 –1710

    Article  CAS  Google Scholar 

  • Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Drug Deliv Rev 54:715 –758

    Article  CAS  Google Scholar 

  • Momeni S, Rezvani Ghomi E, Shakiba M, Shafiei-Navid S, Abdouss M, Bigham A, Khosravi F, Ahmadi Z, Faraji M, Abdouss H (2021) The effect of poly (ethylene glycol) emulation on the degradation of pla/starch composites. Polymers 13:1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer RJB (1996) Novel approach to fabricate porous sponges of poly (d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417 –1422

    Article  CAS  PubMed  Google Scholar 

  • Mukherji S, Ruparelia J, Agnihotri S (2012) Antimicrobial activity of silver and copper nanoparticles: variation in sensitivity across various strains of bacteria and fungi. In: Nano-antimicrobials. Springer, New York

    Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762 –798

    Article  CAS  Google Scholar 

  • Nasiri S-S, Salami-Kalajahi M, Roghani-Mamaqani H, Dehghani E (2018) Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: effect of sequence of copolymer blocks. Inorg Chim Acta 476:83 –92

    Article  CAS  Google Scholar 

  • Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87 –133

    Article  CAS  Google Scholar 

  • Orlovskii V, Komlev V, Barinov S (2002) Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater 38:973 –984

    Article  CAS  Google Scholar 

  • Park JB, Bronzino JD (2002) Biomaterials: principles and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Peidayesh H, Ahmadi Z, Khonakdar HA, Abdouss M, Chodák I (2020a) Baked hydrogel from corn starch and chitosan blends cross-linked by citric acid: preparation and properties. Polym Adv Technol 31:1256 –1269

    Article  CAS  Google Scholar 

  • Peidayesh H, Ahmadi Z, Khonakdar HA, Abdouss M, Chodák I (2020b) Fabrication and properties of thermoplastic starch/montmorillonite composite using dialdehyde starch as a crosslinker. Polym Int 69:317 –327

    Article  CAS  Google Scholar 

  • Pourjafar Devin T, Ahmadi Z, Afshari Taromi F (2017) Investigation on crystallinity behavior of the polylactic acid and poly-3-hydroxybutyrate bio-based polymers in the presence of the pyromellitic anhydride. J Appl Biotechnol 4:661 –668

    Google Scholar 

  • Raisipour-Shirazi A, Ahmadi Z, Garmabi H (2018) Polylactic acid nanocomposites toughened with nanofibrillated cellulose: microstructure, thermal, and mechanical properties. Iran Polym J 27:785 –794

    Article  CAS  Google Scholar 

  • Rani S, Sharma AK, Khan I, Gothwal A, Chaudhary S, Gupta U (2017) Polymeric nanoparticles in targeting and delivery of drugs. In: Nanotechnology-based approaches for targeting and delivery of drugs and genes. Elsevier, Amsterdam

    Google Scholar 

  • Ratner BD (1989) Biomedical applications of synthetic polymers. Polymer Phys 7:201 –247

    Google Scholar 

  • Rezaei B, Afshar-Taromi F, Ahmadi Z, Amiri-Rigi S, Yousefi N (2019) High conductive ito-free flexible electrode based on gr-grafted-cnt/au nps for optoelectronic applications. Opt Mater 89:441 –451

    Article  CAS  Google Scholar 

  • Russell A, Hugo W (1994) 7 antimicrobial activity and action of silver. Chem Eng 31:351 –370

    CAS  Google Scholar 

  • Russell R, Axel A, Shields K, Pishko M (2001) Mass transfer in rapidly photopolymerized poly (ethylene glycol) hydrogels used for chemical sensing. Polymer 42:4893 –4901

    Article  CAS  Google Scholar 

  • Salloum DS, Schlenoff JB (2004) Protein adsorption modalities on polyelectrolyte multilayers. Biomacromolecules 5:1089 –1096

    Article  CAS  PubMed  Google Scholar 

  • Shameli K, Ahmad MB, Zargar M, Yunus WMZW, Ibrahim NA, Shabanzadeh P, Moghaddam MG (2011) Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int J Nanomedicine 6:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun 44:4580 –4598

    Article  Google Scholar 

  • Shchukin DG, Köhler K, Möhwald H (2006) Microcontainers with electrochemically reversible permeability. J Am Chem Soc 128:4560 –4561

    Article  CAS  PubMed  Google Scholar 

  • Shiratori SS, Rubner MF (2000) Ph-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33:4213 –4219

    Article  CAS  Google Scholar 

  • Song J, Kim H, Jang Y, Jang J (2013) Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. J Biol Macromol 5:11563 –11568

    CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1 –20

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Rajabi M, Mousa S (2015) Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomedicine 5:1690 –1703

    CAS  Google Scholar 

  • Svennersten K, Berggren M, Richter-Dahlfors A, Jager EW (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11:3287 –3293

    Article  CAS  PubMed  Google Scholar 

  • Thurmond KB, Remsen EE, Kowalewski T, Wooley KL (1999) Packaging of DNA by shell crosslinked nanoparticles. Nucleic Acids Res 27:2966 –2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Lin C, Lee C, Lin Y, Tseng Y, Hsieh C, Chen C, Tsai C, Hsieh C, Shen J (2011) Fluorescent gold nanoclusters as a biocompatible marker for. vitro and in vivo tracking of endothelial cells. ACS Nano 5(6):4337–4344

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Luo Q, Zhu W, Li X, Shen Z (2016) Reduction/ph dual-responsive nano-prodrug micelles for controlled drug delivery. Polym Chem 7:2665 –2673

    Article  CAS  Google Scholar 

  • Wei M, Gao Y, Li X, Serpe M (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127 –143

    Article  CAS  Google Scholar 

  • Williams D (1987) Tissue-biomaterial interactions. J Mater Sci 22:3421 –3445

    Article  CAS  Google Scholar 

  • Williams R, Doherty P (1994) A preliminary assessment of poly (pyrrole) in nerve guide studies materials in medicine. J Mater Sci 5:429 –433

    CAS  Google Scholar 

  • Yadav P, Yadav H, Shah VG, Shah G, Dhaka GJ (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. JCDR 9:ZE21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghobinia Z, Ahmadi Z, Abdouss MJ (2019) Facile catalytic ring opening polymerization of lactic acid: comparing the performance of Fe and Zn metal species. J Vinyl Addit Technol 25:215 –224

    Article  CAS  Google Scholar 

  • Yoon H, Hong JY, Jang J (2007) Charge-transport behavior in shape-controlled poly (3, 4-ethylenedioxythiophene) nanomaterials: intrinsic and extrinsic factors. Small 3:1774 –1783

    Article  CAS  PubMed  Google Scholar 

  • Zarrintaj P, Ahmadi Z, Vahabi H, Ducos F, Saeb MR, Mozafari M (2018a) Polyaniline in retrospect and prospect. Mater Today: Proc 5:15852 –15860

    CAS  Google Scholar 

  • Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, Mozafari M (2018b) Agarose-based biomaterials for tissue engineering. Carbohydr Polym 187:66 –84

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-Q, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Drug Deliv Rev 64:1363 –1384

    Article  CAS  Google Scholar 

  • Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble au 8 nanodots. J Am Chem Soc 125:7780 –7781

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y-M, Ishikawa A, Okahashi R, Uchida K, Nemoto Y, Nakayama M, Nakayama Y (2007) Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. J Control Release 123:239 –246

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahed Ahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nasiri, S.S., Ahmadi, Z., Afshar-Taromi, F. (2022). Synthesis Biomaterials in Biomedical Applications. In: Jana, S., Jana, S. (eds) Functional Biomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7152-4_11

Download citation

Publish with us

Policies and ethics