Skip to main content
  • 520 Accesses

Abstract

The uncontrolled use of drugs endangers human health and causes drastic economic losses and irreparable consequences. Today, there is a great demand to introduce accurate, potent, real-time, and rapid methodologies for sensitive detection and quantification of drugs. To overcome this challenging difficulty, biosensors have been introduced as valuable tools. Among the diverse kinds of biosensors, aptamer-based biosensors (aptasensors) have evolved as novel candidates for the sensitive evaluation of different groups of drugs, owing to their superior specificity, sensitivity, and selectivity. This chapter encompasses the recent progress in the development of aptasensors to quantitatively monitor various types of drugs. Besides, sensing mechanisms associated with the aptasensors are given that provide ideas to develop the novel aptasensing platforms as the portable test kits for the on-site detection of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM, Emrani ASJS et al (2017) A novel electrochemical aptasensor for ultrasensitive detection of fluoroquinolones based on single-stranded DNA-binding protein. Sensors Actuators B: Chem 240:100–106

    Article  CAS  Google Scholar 

  • Akiyama Y, Ma Q, Edgar E, Laikhter A, Hecht SM (2008) Identification of strong DNA binding motifs for bleomycin. J Am Chem Soc 130(30):9650–9651

    Article  CAS  PubMed  Google Scholar 

  • Alberti KGMM, Zimmet PZ (1998) Definition diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 15(7):539–553

    Article  CAS  PubMed  Google Scholar 

  • Alfarouk KO, Stock C-M, Taylor S, Walsh M, Muddathir AK, Verduzco D et al (2015) Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 15(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Alkahtani SA (2020) Silver nanoparticles conjugated MnFe-based Prussian blue analogue for voltammetric and impedimetric bioaptasensing of amifostine (ethyol). Microchim Acta 187(10):1–8

    Article  Google Scholar 

  • Auerbach T, Bashan A, Yonath A (2004) Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. Trends Biotechnol 22(11):570–576

    Article  CAS  PubMed  Google Scholar 

  • Azadbakht A, Abbasi AR (2019) Impedimetric aptasensor for kanamycin by using carbon nanotubes modified with MoSe 2 nanoflowers and gold nanoparticles as signal amplifiers. Microchim Acta 186(1):23

    Article  Google Scholar 

  • Bahadır EB, Sezgintürk MK (2015) Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem 478:107–120

    Article  PubMed  Google Scholar 

  • Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D (2018) An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 410(5):1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Bai Z, Chen Y, Li F, Zhou Y, Yin H, Ai S (2019) Electrochemical aptasensor for sulfadimethoxine detection based on the triggered cleavage activity of nuclease P1 by aptamer-target complex. Talanta 204:409–414

    Article  CAS  PubMed  Google Scholar 

  • Bangemann M (1994) Commission Regulation (EC) No 1430/94. Official Journal of the European Communities, Brussels, Belgium

    Google Scholar 

  • Barnes PJ (2013) Theophylline. Am J Respir Crit Care Med 188(8):901–906

    Article  CAS  PubMed  Google Scholar 

  • Blum RH, Carter SK, Agre K (1973) A clinical review of bleomycin—a new antineoplastic agent. Cancer 31(4):903–914

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Sun T, Grattan KT (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 195:332–351

    Article  CAS  Google Scholar 

  • Carta F, Scozzafava A, Supuran CT (2012) Sulfonamides: a patent review (2008–2012). Expert Opin Ther Pat 22(7):747–758

    Article  CAS  PubMed  Google Scholar 

  • Chandra P, Noh H-B, Won M-S, Shim Y-B (2011) Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens Bioelectron 26(11):4442–4449

    Article  CAS  PubMed  Google Scholar 

  • Chandra P, Koh WCA, Noh HB, Shim YB (2012) In vitro monitoring of i-NOS concentrations with an immunosensor: the inhibitory effect of endocrine disruptors on i-NOS release. Biosens Bioelectron

    Google Scholar 

  • Chen X-X, Lin Z-Z, Hong C-Y, Yao Q-H, Huang Z-Y (2020) A dichromatic label-free aptasensor for sulfadimethoxine detection in fish and water based on AuNPs color and fluorescent dyeing of double-stranded DNA with SYBR Green I. Food Chem 309:125712

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Liu H, Zhang H, Chu G, Guo Y, Sun X (2020) Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sensors Actuators B Chem 304:127367

    Article  CAS  Google Scholar 

  • Choudhary M, Yadav P, Singh A, Kaur S, Ramirez-Vick J, Chandra P, Arora K, Singh SP (2016) CD 59 targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28:2565–2574

    Article  CAS  Google Scholar 

  • Dawson AH, Whyte IM (1999) Therapeutic drug monitoring in drug overdose. Br J Clin Pharmacol 48(3):278–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghani S, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Nejabat M et al (2018) A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B. Anal Chim Acta 1030:142–147

    Article  CAS  PubMed  Google Scholar 

  • Deka S, Saxena V, Hasan A, Chandra P, Pandey LM (2018) Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater Sci Eng C 92:932–941

    Article  CAS  Google Scholar 

  • Derbyshire N, White SJ, Bunka DH, Song L, Stead S, Tarbin J et al (2012) Toggled RNA aptamers against aminoglycosides allowing facile detection of antibiotics using gold nanoparticle assays. Anal Chem 84(15):6595–6602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirkzwager RM, Liang S, Tanner JA (2016) Development of aptamer-based point-of-care diagnostic devices for malaria using three-dimensional printing rapid prototyping. ACS Sensors 1(4):420–426

    Article  CAS  Google Scholar 

  • Edson RS, Terrell CL, editors. The aminoglycosides. In: Mayo clinic proceedings; 1999, Elsevier

    Google Scholar 

  • Emrani AS, Taghdisi SM, Danesh NM, Jalalian SH, Ramezani M, Abnous K (2015) A novel fluorescent aptasensor for selective and sensitive detection of digoxin based on silica nanoparticles. Anal Methods 7(9):3814–3818

    Article  CAS  Google Scholar 

  • Esmaelpourfarkhani M, Abnous K, Taghdisi SM, Chamsaz MJB (2020) A novel turn-off fluorescent aptasensor for ampicillin detection based on perylenetetracarboxylic acid diimide and gold nanoparticles. Biosensors Bioelectron 164:112329

    Article  CAS  Google Scholar 

  • Grill MF, Maganti RK (2011) Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol 72(3):381–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha N-R, Jung I-P, Kim S-H, Kim A-R, Yoon M-Y (2017) Paper chip-based colorimetric sensing assay for ultra-sensitive detection of residual kanamycin. Process Biochem 62:161–168

    Article  CAS  Google Scholar 

  • Han Y, Zheng J, Dong S (2013) A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites. Electrochim Acta 90:35–43

    Article  CAS  Google Scholar 

  • Hanekamp JC, Bast A (2015) Antibiotics exposure and health risks: chloramphenicol. Environ Toxicol Pharmacol 39(1):213–220

    Article  CAS  PubMed  Google Scholar 

  • He H, Wang S-Q, Han Z-Y, Tian X-H, Zhang W-W, Li C-P et al (2020) Construction of electrochemical aptasensors with Ag (I) metal− organic frameworks toward high-efficient detection of ultra-trace penicillin. Appl Surf Sci 531:147342

    Article  CAS  Google Scholar 

  • Hermann T (2007) Aminoglycoside antibiotics: old drugs and new therapeutic approaches. J Cell Mol Life Sci 64(14):1841–1852

    Article  CAS  Google Scholar 

  • Hu S-W, Qiao S, Pan J-B, Kang B, Xu J-J, Chen H-Y (2018a) A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Talanta 179:9–14

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Goud KY, Kumar VS, Catanante G, Li Z, Zhu Z et al (2018b) Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sensors Actuators B Chem 268:278–286

    Article  CAS  Google Scholar 

  • Idili A, Arroyo-Currás N, Ploense KL, Csordas AT, Kuwahara M, Kippin TE et al (2019) Seconds-resolved pharmacokinetic measurements of the chemotherapeutic irinotecan in situ in the living body. Chem Sci 10(35):8164–8170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalalian SH, Karimabadi N, Ramezani M, Abnous K, Taghdisi SM (2018) Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci Technol 73:45–57

    Article  CAS  Google Scholar 

  • Jiang Y, Sun D-W, Pu H, Wei Q (2019) Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 197:151–158

    Article  CAS  PubMed  Google Scholar 

  • Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X et al (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 90:525–533

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2):153–164

    Article  CAS  PubMed  Google Scholar 

  • Juillière Y, Selton-Suty C (2010) Digoxin therapy: a persisting interest despite contrary winds. Arch Cardiovasc Dis 103(5):281–284

    Article  PubMed  Google Scholar 

  • Katiyar N, Selvakumar LS, Patra S, Thakur MS (2013) Gold nanoparticles based colorimetric aptasensor for theophylline. Anal Methods 5(3):653–659

    Article  CAS  Google Scholar 

  • Kato S, Inui N, Hakamata A, Suzuki Y, Enomoto N, Fujisawa T et al (2018) Changes in pulmonary endothelial cell properties during bleomycin-induced pulmonary fibrosis. Respir Res 19(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  • Khajavian Z, Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM (2021) A highly sensitive, simple and label-free fluorescent aptasensor for tobramycin sensing based on PicoGreen intercalation into DNA duplex regions of three-way junction origami. Microchem J 160:105657

    Article  CAS  Google Scholar 

  • Khavani M, Izadyar M, Housaindokht MR (2019) Theoretical design and experimental study on the gold nanoparticles based colorimetric aptasensors for detection of neomycin B. Sensors Actuators B Chem 300:126947

    Article  CAS  Google Scholar 

  • Lin Z, Ma Q, Fei X, Zhang H, Su X (2014) A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells. Anal Chim Acta 818:54–60

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Sua X, Luo S, Liu B, Yang C (2016) Development of DNA-based signal amplification and microfluidic technology for protein assay: a review. TrAC Trends Anal Chem 80:132–148

    Article  CAS  Google Scholar 

  • Ling K, Jiang H, Zhang L, Li Y, Yang L, Qiu C et al (2016) A self-assembling RNA aptamer-based nanoparticle sensor for fluorometric detection of Neomycin B in milk. Anal Bioanal Chem 408(13):3593–3600

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Xiao H, Zhang B, Shen H, Zhu L, Li C (2019) Copper-catalyzed remote C (sp3)−H trifluoromethylation of carboxamides and sulfonamides. Angew Chem Int Ed 58(8):2510–2513

    Article  CAS  Google Scholar 

  • LiverTox N. Clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda (MD); 2020

    Google Scholar 

  • Lofrano G, Libralato G, Adinolfi R, Siciliano A, Iannece P, Guida M et al (2016) Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects. Ecotoxicol Environ Safety 123:65–71

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Liu H, Zhang L, Li H, Yan M, Song X et al (2018) Multiplexed aptasensor for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels and Ru (NH3) 63+ electronic wires. Biosens Bioelectron 99:8–13

    Article  CAS  PubMed  Google Scholar 

  • Mahato K, Kumar S, Srivastava A, Maurya PK, Singh R, Chandra P (2018) Electrochemical immunosensors: fundamentals and applications in clinical diagnostics. In: Handbook of immunoassay technologies

    Google Scholar 

  • Mashhadizadeh MH, Azhdeh A, Naseri N (2017) 3-Mercapto propionic acid self-assembled on gold nano-particles applied for modification of screen-printed electrode as a new digoxin electrochemical aptasensor using graphene oxide-based signal-on strategy. J Electroanal Chem 787:132–138

    Article  CAS  Google Scholar 

  • Mathews B, Thalody AA, Miraj SS, Kunhikatta V, Rao M, Saravu K (2019) Adverse effects of fluoroquinolones: a retrospective cohort study in a South Indian tertiary healthcare facility. Antibiotics 8(3):104

    Article  CAS  PubMed Central  Google Scholar 

  • McGlinchey TA, Rafter PA, Regan F, McMahon GP (2008) A review of analytical methods for the determination of aminoglycoside and macrolide residues in food matrices. Anal Chim Acta 624(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Othman A, Karimi A, Andreescu S (2016) Functional nanostructures for enzyme based biosensors: Properties, fabrication and applications. J Mater Chem B 4(45):7178–7203

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Cascella M (2020) Beta lactam antibiotics. StatPearls [Internet]

    Google Scholar 

  • Purohit P, Stern S (1994) Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370(6491):659–662

    Article  CAS  PubMed  Google Scholar 

  • Rad AO, Azadbakht A (2019) An aptamer embedded in a molecularly imprinted polymer for impedimetric determination of tetracycline. Microchim Acta 186(2):56

    Article  Google Scholar 

  • Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM (2015) A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187

    Article  CAS  PubMed  Google Scholar 

  • Ray PC, Fan Z, Crouch RA, Sinha SS, Pramanik AJCSR (2014) Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chem Soc Rev 43(17):6370–6404

    Article  CAS  PubMed  Google Scholar 

  • Rouhbakhsh Z, Verdian A, Rajabzadeh G (2020) Design of a liquid crystal-based aptasensing platform for ultrasensitive detection of tetracycline. Talanta 206:120246

    Article  CAS  PubMed  Google Scholar 

  • Roushani M, Rahmati Z, Farokhi S, Hoseini SJ, Fath RH (2020) The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles. Mater Sci Eng C 108:110388

    Article  CAS  Google Scholar 

  • Saini S, Bhowmick S, Shenoy VB, BJJoP B, Chemistry PA (2007) Rate of excitation energy transfer between fluorescent dyes and nanoparticles. J Photochem Photobiol A: Chem 190(2–3):335–341

    Article  CAS  Google Scholar 

  • Shang M, Zhang J, Qi H, Gao Y, Yan J, Song W (2019) All-electrodeposited amorphous MoSx@ZnO core-shell nanorod arrays for self-powered visible-light-activated photoelectrochemical tobramycin aptasensing. Biosens Bioelectron 136:53–59

    Article  CAS  PubMed  Google Scholar 

  • Shang M, Gao Y, Zhang J, Yan J, Song W (2020) Signal-on cathodic photoelectrochemical aptasensing of insulin: plasmonic Au activated amorphous MoSx photocathode coupled with target-induced sensitization effect. Biosens Bioelectron 165:112359

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Selvam SP, Yun K (2020) Electrochemical detection of amikacin sulphate using reduced graphene oxide and silver nanoparticles nanocomposite. Appl Surf Sci 512:145742

    Article  CAS  Google Scholar 

  • Shirani M, Kalantari H, Khodayar MJ, Kouchak M, Rahbar N (2020) A novel strategy for detection of small molecules based on aptamer/gold nanoparticles/graphitic carbon nitride nanosheets as fluorescent biosensor. Talanta 219, 121235

    Google Scholar 

  • Sun C, Su R, Bie J, Sun H, Qiao S, Ma X et al (2018) Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline. Dyes Pigments 149:867–875

    Article  CAS  Google Scholar 

  • Sun M, Zhu Y, Yan K, Zhang J (2019) Dual-mode visible light-induced aptasensing platforms for bleomycin detection based on CdS–In2S3 heterojunction. Biosens Bioelectron 145:111712

    Article  CAS  PubMed  Google Scholar 

  • Syshchyk O, Skryshevsky VA, Soldatkin OO, Soldatkin AP (2015) Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals. Biosens Bioelectron 66:89–94

    Article  CAS  PubMed  Google Scholar 

  • Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Abnous K (2016) A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem 203:145–149

    Article  CAS  PubMed  Google Scholar 

  • Taib M, Tan LL, Abd Karim NH, Ta GC, Heng LY, Khalid B (2020) Reflectance aptasensor based on metal salphen label for rapid and facile determination of insulin. Talanta 207:120321

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Zhang C, Huang D, Wang R, Zeng G, Yan M et al (2020) Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides. Chem Eng J 389:123423

    Article  CAS  Google Scholar 

  • Tor Y (2006) The ribosomal A-site as an inspiration for the design of RNA binders. Biochimie 88(8):1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Tu C, Dai Y, Zhang Y, Wang W, Wu LJSAPAM, Spectroscopy B (2020) A simple fluorescent strategy based on triple-helix molecular switch for sensitive detection of chloramphenicol. Spectrochim Acta Part A: Mol Biomol Spectrosc 224:117415

    Article  CAS  Google Scholar 

  • Verma S, Choudhary J, Singh KP, Chandra P, Singh SP (2019) Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int J Biol Macromol

    Google Scholar 

  • Vicens Q, Westhof E (2003) Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. Biopolym: Original Res Biomol 70(1):42–57

    Article  CAS  Google Scholar 

  • Voet D, Voet JG (2011) Biochemistry, 4th edn. John Wiley& Sons Inc, New York, p 492

    Google Scholar 

  • Wang Y, Bian F, Qin X, Wang Q (2018) Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu (III)-doped CdS quantum dots. Microchim Acta 185(3):161

    Article  Google Scholar 

  • Wang J, Lu T, Hu Y, Wang X, Wu Y (2020) A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk. Spectrochim Acta Part A: Mol Biomol Spectrosc 226:117651

    Article  CAS  Google Scholar 

  • Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19(6)

    Google Scholar 

  • Wu S, Zhang H, Shi Z, Duan N, Fang C, Dai S et al (2015) Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 50:597–604

    Article  CAS  Google Scholar 

  • Wu Y-y, Liu B-w, Huang P, Wu F-Y (2019a) A novel colorimetric aptasensor for detection of chloramphenicol based on lanthanum ion–assisted gold nanoparticle aggregation and smartphone imaging. Anal Bioanal Chem 411(28):7511–7518

    Article  CAS  PubMed  Google Scholar 

  • Wu J-F, Gao X, Ge L, Zhao G-C, Wang G-F (2019b) A fluorescence sensing platform of theophylline based on the interaction of RNA aptamer with graphene oxide. RSC Adv 9(34):19813–19818

    Article  CAS  Google Scholar 

  • Yan J, Huang Y, Zhang C, Fang Z, Bai W, Yan M et al (2017) Aptamer based photometric assay for the antibiotic sulfadimethoxine based on the inhibition and reactivation of the peroxidase-like activity of gold nanoparticles. Microchim Acta 184(1):59–63

    Article  CAS  Google Scholar 

  • Yan S, Lai X, Du G, Xiang Y (2018) Identification of aminoglycoside antibiotics in milk matrix with a colorimetric sensor array and pattern recognition methods. Anal Chim Acta 1034:153–160

    Article  CAS  PubMed  Google Scholar 

  • Yan T, Zhang X, Ren X, Lu Y, Li J, Sun M et al (2020) Fabrication of N-GQDs and AgBiS2 dual-sensitized ZIFs-derived hollow ZnxCo3-xO4 dodecahedron for sensitive photoelectrochemical aptasensing of ampicillin. Sensors Actuators B: Chem 320:128387

    Article  CAS  Google Scholar 

  • Yin J, Guo W, Qin X, Zhao J, Pei M, Ding F (2017) A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification. Sensors Actuators B Chem 241:151–159

    Article  CAS  Google Scholar 

  • Zhang M, Zhang Z, Xu Y, Wen Z, Ding C, Guo Y et al (2020) A novel self-powered aptasensor for digoxin monitoring based on the dual-photoelectrode membrane/mediator-free photofuel cell. Biosens Bioelectron 156:112135

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Guo W, Pei M, Ding F (2016) GR–Fe3O4 NPs and PEDOT–AuNPs composite based electrochemical aptasensor for the sensitive detection of penicillin. Anal Methods 8(22):4391–4397

    Article  CAS  Google Scholar 

  • Zhao Y, Xu Y, Zhang M, Xiang J, Deng C, Wu H (2019) An electrochemical dual-signaling aptasensor for the ultrasensitive detection of insulin. Anal Biochem 573:30–36

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Yang L, Hu B, Song Y, He L, Chen W et al (2018) Core-shell heterostructured CuFe@FeFe Prussian blue analogue coupling with silver nanoclusters via a one-step bioinspired approach: efficiently nonlabeled aptasensor for detection of bleomycin in various aqueous environments. Anal Chem 90(22):13624–13631

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zuo L, Wei Y, Dong C (2020a) Development of fluorescent aptasensing system for ultrasensitive analysis of kanamycin. J Lumin 222:117124

    Article  CAS  Google Scholar 

  • Zhou X, Zhang W, Wang Z, Han J, Xie G, Chen S (2020b) Ultrasensitive aptasensing of insulin based on hollow porous C3N4/S2O82−/AuPtAg ECL ternary system and DNA walker amplification. Biosens Bioelectron 148:111795

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Abnous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khoshbin, Z., Sameiyan, E., Abnous, K., Taghdisi, S.M. (2022). Aptamer-Based Sensors for Drug Analysis. In: Chandra, P., Panesar, P.S. (eds) Nanosensing and Bioanalytical Technologies in Food Quality Control. Springer, Singapore. https://doi.org/10.1007/978-981-16-7029-9_3

Download citation

Publish with us

Policies and ethics