Skip to main content

Nuclear Power as a Possible Way to Terraforming the Mars for Starting the Colonization

  • Chapter
  • First Online:
Recent Advances in Power Systems

Abstract

The beginning of the colonization of Mars and eventually beyond is already very closed. It has likewise built up the process for our annihilation, recently as all previously main assertive species of planet Earth have become extinct before us. Although this remnant a revealing threat, it must be reconsidered to revise the outer space treaty to allow for a Mars establishment of human colonization and terraforming program constructed to design a second viable biosphere for human beings—a fundamental footstep in ensuring our species’ futurity continuity. One of the fundamental and essential needs of the colonization of Mars is a profusion of energy sources. The overall energy system is likely to adoption a combination of resources are positioned on nuclear power, fuel-cell, and solar electricity power. This paper will discuss the opportunity of creating an appropriated system using considerable exclusive modern and featherweight types of nuclear power reactor, in small thermo-nuclear power machines, nuclear fusion-type reactors, portable “rover type” atomic reactors, and mobile battery type of proton reaction cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reches Y (2019) Concrete on Mars: Options, challenges, and solutions for binder-based construction on the Red Planet. Cement and Concrete Composites, 104(December 2018), 103349. https://doi.org/10.1016/j.cemconcomp.2019.103349

  2. Schenker PS, Huntsberger TL, Pirjanian P, Baumgartner ET, Tunstel E (2003) Planetary rover developments supporting mars exploration, sample return and future human-robotic colonization. Auton Robot 14(2–3):103–126. https://doi.org/10.1023/A:1022271301244

    Article  MATH  Google Scholar 

  3. Banfield D, Spiga A, Newman C, Forget F, Lemmon M, Lorenz R, Murdoch N, Viudez-Moreiras D, Pla-Garcia J, Garcia RF, Lognonné P, Karatekin Ö, Perrin C, Martire L, Teanby N, Hove BV, Maki JN, Kenda B, Mueller NT, Banerdt WB (2020) The atmosphere of Mars as observed by InSight. Nat Geosci 13(3):190–198. https://doi.org/10.1038/s41561-020-0534-0

    Article  Google Scholar 

  4. Oeftering, R. C., Kimnach, G. L., Fincannon, J., Mckissock, B. I., Loyselle, P. L., & Wong, E. (2012). Advanced modular power approach to affordable, supportable space systems. AIAA SPACE Conference and Exposition 2012, September, 1–30. https://doi.org/10.2514/6.2012-5253

  5. Levchenko I, Xu S, Mazouffre S, Keidar M, Bazaka K (2019) Mars Colonization: Beyond Getting There. Global Chall 3(1):1800062. https://doi.org/10.1002/gch2.201800062

    Article  Google Scholar 

  6. Dey D (2019) Space microbiology: modern research and advantages for human colonization on Mars. International Journal for Research in Applied Sciences and Biotechnology, 6(4), 4–10. https://doi.org/10.31033/ijrasb.6.4.2

  7. Zubrin RM, Mckay CP (1997) Technological equirements for terraforming mars. JBIS - Journal of the British Interplanetary Society 50(3):83–92. https://doi.org/10.2514/6.1993-2005

    Article  Google Scholar 

  8. Craddock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J Geophys Res 107:5111. https://doi.org/10.1029/2001JE0011505

    Article  Google Scholar 

  9. Davis JM, Balme M, Grindrod PM, Williams RME, Gupta S (2016) Extensive Noachian fluvial systems in Arabia Terra: Implications for early Martian climate. Geology 44(10):847–850. https://doi.org/10.1130/G38247.1

    Article  Google Scholar 

  10. Christensen PR (2006) Water at the Poles and in Permafrost Regions of Mars. Geo. Sci. Elements 2(3):151–155. https://doi.org/10.2113/gselements.2.3.151

    Article  Google Scholar 

  11. Nazari-Sharabian M, Aghababaei M, Karakouzian M, Karami M (2020) Water on Mars-A literature review. In Galaxies (Vol. 8, Issue 2). https://doi.org/10.3390/GALAXIES8020040

  12. Herny C, Conway SJ, Raack J, Carpy S, Colleu-Banse T, Patel MR (2019) Downslope sediment transport by boiling liquid water under Mars-like conditions: Experiments and potential implications for Martian gullies. Geol Soc Spec Pub 467(1):373–410. https://doi.org/10.1144/SP467.10

    Article  Google Scholar 

  13. Hempsell M, Longstaff R, Alexandra S, Eckersley S, Mansfield K (2019) General Issue Preserving geostationary orbit: the next steps enabled by low-cost but safety compliant Guidance Navigation and Control ( GNC ) architectures in a climate of existential risk Submitting papers to JBIS. 71(9).

    Google Scholar 

  14. International Atomic Energy Agency (2005) The Role of Nuclear Power and Nuclear Propulsion

    Google Scholar 

  15. Track T, Bhavya C, Daniel K (2020) Track 3 : Mission Concepts and Policy for Nuclear Spac Systems

    Google Scholar 

  16. Report A (1837) Minutes of the. Proc Inst Civ Eng 1:5–8. https://doi.org/10.1680/imotp.1837.24724

    Article  Google Scholar 

  17. In S (2017) Cassini timeline: nasa mission to saturn ahead of grand keep up with this story and more by subscribing now, pp1–15

    Google Scholar 

  18. Zakirov V, Pavshook V (2007) Russian Nuclear Rocket Engine Design for Mars Exploration. Tsinghua Science and Technology 12(3):256–260. https://doi.org/10.1016/S1007-0214(07)70038-X

    Article  Google Scholar 

  19. Caselli L (2012) Space Demilitarization Treaties in a New Era of Manned Nuclear Spaceflights. Journal of Air Law and Commerce 77(3):641

    Google Scholar 

  20. Edwards CB, Danson CN (2015) Inertial confinement fusion and prospects for power production. High Power Laser Science and Engineering 3. https://doi.org/10.1017/hpl.2014.51

  21. Blackburn TG, Ridgers CP, Kirk JG, Bell AR (2014) Quantum radiation reaction in laser-electron-beam collisions. Phys Rev Lett 112(1):1–5. https://doi.org/10.1103/PhysRevLett.112.015001

    Article  Google Scholar 

  22. Laberge M, Howard S, Richardson D, Froese A, Suponitsky V, Reynolds M, Plant D (2013) Acoustically driven Magnetized Target Fusion. 2013 IEEE 25th Symposium on Fusion Engineering, SOFE 2013. https://doi.org/10.1109/SOFE.2013.6635495

  23. Laberge M (2008) An acoustically driven magnetized target fusion reactor. J Fusion Energy 27(1–2):65–68. https://doi.org/10.1007/s10894-007-9091-4

    Article  Google Scholar 

  24. Lindemuth IR (2015) The ignition design space of magnetized target fusion. Phys Plasma 22(12). https://doi.org/10.1063/1.4937371

  25. Boozer AH (1998) What is a stellarator? Phys Plasmas, 5(5 PART 1), 1647–1655. https://doi.org/10.1063/1.872833

  26. Najmabadi F, Raffray AR, Abdel-Khalik SI, Bromberg L, Crosatti L, El-Guebaly L, Garabedian PR, Grossman AA, Henderson D, Ibrahim A, Ihli T (2008) The aries-cs compact stellarator fusion power plant. Fusion Science and Technology, 54(3), 655–672. https://doi.org/10.13182/FST54-655

  27. Klinger T, Baylard C, Beidler CD, Boscary J, Bosch HS, Dinklage A, Hartmann D, Helander P, Maßberg H, Peacock A, Pedersen TS, Rummel T, Schauer F, Wegener L, Wolf R (2013) Towards assembly completion and preparation of experimental campaigns of Wendelstein 7-X in the perspective of a path to a stellarator fusion power plant. Fusion Eng Des 88(6–8):461–465. https://doi.org/10.1016/j.fusengdes.2013.02.153

    Article  Google Scholar 

  28. Miley GH (2003) Distributed Power Sources for Mars Colonization. 1211:1211–1218. https://doi.org/10.1063/1.1541421

    Article  Google Scholar 

  29. Miley GH, Castano C, Lipson A, Kim SO, Luo N (2002) Progress in development of a low energy reaction cell for distributed power applications. International Conference on Nuclear Engineering, Proceedings, ICONE 4:31–37. https://doi.org/10.1115/ICONE10-22148

    Article  Google Scholar 

  30. Bibring JP, Langevin Y, Poulet F, Gendrin A, Gondet B, Berthé M, Soufflot A, Drossart P, Combes M, Bellucci G, Moroz V et al (2004) Perennial water ice identified in the south polar cap of Mars. Nature 2004, 428, 627–630.

    Google Scholar 

  31. Recurring Martian Streaks: Flowing Sand, NotWater? Available online: http://www.nasa.gov/feature/jpl/recurring-martian-streaks-flowing-sand-not-water (accessed on 27 December 2017).

  32. Ghosh J, Methikkalam RRJ, Bhuin RG, Ragupathy G, Choudhary N, Kumar R, Pradeep T (2019) Clathrate hydrates in interstellar environment. Proc Natl Acad Sci USA 116:1526–1531

    Article  Google Scholar 

  33. Martín-Torres FJ, Zorzano M-P, Valentín-Serrano P, Harri A-M, Genzer M, Kemppinen O, Rivera-Valentin EG, Jun I, Wray JJ, Madsen M et al (2015) Transient liquid water and water activity at Gale crater on Mars. Nat Geosci 8:357–361

    Article  Google Scholar 

  34. European Space Agency (ESA). Water at Martian South Pole. Available online: http://www.esa.int/Our_Activities/Space_Science/Mars_Express/Water_at_Martian_south_pole. Accessed on 17 March 2004

  35. Webster G, Brown D (2013) NASA Mars Spacecraft Reveals a More Dynamic Red Planet. https://mars.nasa.gov/news/nasa-mars-spacecraft-reveals-a-more-dynamic-red-planet/ (accessed on 10 December 2013)

  36. Grotzinger JP, Crisp J, Vasavada AR (2015) Curiosity’s Mission of Exploration at Gale Crater. Mars. Elements 11:19–26

    Article  Google Scholar 

  37. Jones EG (2018) Shallow transient liquid water environments on present-day mars, and their implications for life. Acta Astronaut 146:144–150

    Article  Google Scholar 

  38. Byrne S, Ingersoll AP (2003) A sublimation model for martian south polar ice features. Science 299, 1051 (2003)

    Google Scholar 

  39. Giauque WF, Egan CJ (1937) Carbon Dioxide. The Heat Capacity and Vapor Pressure of the Solid. The Heat of Sublimation. Thermodynamic and Spectroscopic Values of the Entropy. J Chem Phys 5:45

    Article  Google Scholar 

  40. Mangan TP et al (2017) CO2 Ice Structure and Density Under Martian Atmospheric Conditions. Icarus 294:201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayasinghe, N., Gunasekara, U. (2022). Nuclear Power as a Possible Way to Terraforming the Mars for Starting the Colonization. In: Gupta, O.H., Sood, V.K., Malik, O.P. (eds) Recent Advances in Power Systems. Lecture Notes in Electrical Engineering, vol 812. Springer, Singapore. https://doi.org/10.1007/978-981-16-6970-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6970-5_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6969-9

  • Online ISBN: 978-981-16-6970-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics