Skip to main content

Abstract

Aiming at the problem of low accuracy and efficiency of artificial identification of peach diseases and pests, the RFBNet based on Kmeans++ is proposed to construct the image detector of peach diseases and pests respectively. The Kmeans++ algorithm is used to adjust the prior box size instead of manually setting the prior box size, which makes it match the size of diseases and pests better, so that small diseases and pests can get better detection results. Four kinds of disease images and five kinds of pest images were collected from peach orchard in Shandong Province to construct the data set of peach diseases and pests, and the data set was expanded by five kinds of data enhancement methods to enhance the generalization ability of the model. The experimental results show that using this algorithm to detect peach disease and pest images, the disease detection accuracy is 73.12%, and the pest detection accuracy is 94.02%, which are higher than the SSD and RFBNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893. IEEE, Los Alamitos, CA (2005)

    Google Scholar 

  2. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of 12th International Conference on Pattern Recognition, pp. 582–585. IEEE, Los Alamitos, CA (1994)

    Google Scholar 

  3. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: Proceedings of International Conference on Image Processing, pp. I-I. IEEE, Piscataway, NJ (2002)

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE, Los Alamitos, CA (2014)

    Google Scholar 

  5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015)

    Article  Google Scholar 

  6. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully convolutional networks. Adv. Neural. Inf. Process. Syst. 29, 379–387 (2016)

    Google Scholar 

  7. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788. IEEE, Los Alamitos, CA (2016)

    Google Scholar 

  8. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: Single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer, Cham, Switzerland (2016)

    Google Scholar 

  9. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D.: Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 1–11 (2016)

    Article  Google Scholar 

  10. Fuentes, A., Yoon, S., Kim, S.C., Park, D.S.: A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17(9), 2022 (2017)

    Article  Google Scholar 

  11. Karthik, R., Hariharan, M., Anand, S., Mathikshara, P., Johnson, A., Menaka, R.: Attention embedded residual CNN for disease detection in tomato leaves. Appl. Soft Comput. 86, 105933 (2020)

    Google Scholar 

  12. Xinran, L., Shuqin, L., Bin, L.: Detection of apple leaf diseases based on improved Faster R_CNN. Comput. Eng., 1–7 (2020)

    Google Scholar 

  13. Ding, W., Taylor, G.: Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 123, 17–28 (2016)

    Article  Google Scholar 

  14. Shen, Y., Zhou, H., Li, J., Jian, F., Jayas, D.S.: Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 145, 319–325 (2018)

    Article  Google Scholar 

  15. Selvaraj, M.G., Vergara, A., Ruiz, H., Safari, N., Blomme, G.: AI-powered banana diseases and pest detection. Plant Methods 15(1), 92 (2019)

    Google Scholar 

  16. Wang, Q.J., Zhang, S.Y., Dong, S.F., Zhang, G.C., Yang, J., Li, R., Wang, H.Q.: Pest24: a large-scale very small object data set of agricultural pests for multi-target detection. Comput. Electron. Agric. 175, 105585 (2020)

    Google Scholar 

  17. Liu, S., Huang, D.: Receptive field block net for accurate and fast object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 385–400. Springer, Cham (2018)

    Google Scholar 

  18. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.1027–1035. SIAM, New Orleans (2007)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by First Class Discipline Funding of Shandong Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiju Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Q., Sun, W., Shi, A., Lei, C., Mu, S. (2022). Image Detection of Peach Diseases and Pests. In: Yao, J., Xiao, Y., You, P., Sun, G. (eds) The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021). Lecture Notes in Electrical Engineering, vol 813. Springer, Singapore. https://doi.org/10.1007/978-981-16-6963-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6963-7_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6962-0

  • Online ISBN: 978-981-16-6963-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics