Skip to main content

Crop-Type Classification Using Sentinel-2A and in Situ Data: Case Study of Shri Dungargarh Taluk of Rajasthan, India

  • Conference paper
  • First Online:
Smart Technologies for Energy, Environment and Sustainable Development, Vol 2 (ICSTEESD 2020)

Abstract

India has two main types of crops Kharif and Rabi. Rabi crops are sown and harvested in winters (October–March). Remote sensing technique helps to identify and monitor crop health and production. This will help to the agriculturalist, resource managers and planners to provide best decision and achieve the agricultural sustainability. Sentinel-2A and field data were used to identify crop types based on supervised classification (maximum likelihood classifier) approach. For growing season 2019–20 classification results were achieved. The overall accuracy was 87.50%. The main challenge of the present study was to classify wheat, mustard, gram and other crops at high accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Foley, R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, J.H. Helkowski, Global consequences of land use. Science 309(5734), 570–574 (2005)

    Google Scholar 

  2. J.B. Odenweller, K.I. Johnson, Crop identification using Landsat temporal-spectral profiles. Remote Sens. Environ. 14(1–3), 39–54 (1984)

    Google Scholar 

  3. D. Bargiel, A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 198, 369–383 (2017)

    Article  Google Scholar 

  4. P. Villa, D. Stroppiana, G. Fontanelli, R. Azar, P.A. Brivio, In-season mapping of crop type with optical and X-band SAR data: a classification tree approach using synoptic seasonal features. Remote Sens. 7(10), 12859–12886 (2015)

    Google Scholar 

  5. G. Fontanelli, A. Crema, R. Azar, D. Stroppiana, P. Villa, M. Boschetti, Agricultural crop mapping using optical and SAR multi-temporal seasonal data: a case study in Lombardy region, Italy, in 2014 IEEE Geoscience and Remote Sensing Symposium (IEEE, July 2014), pp. 1489–1492

    Google Scholar 

  6. A. Bala, K.S. Rawat, A.K. Mishra, Assessment and Validation of Evapotranspiration using SEBAL algorithm and Lysimeter data of IARI Agricultural Farm, India. Geocarto Int. 28(5), 439–452 (2016)

    Google Scholar 

  7. G. Waldhoff , U. Lussem, G. Bareth, Multi-data approach for remote sensing-based regional crop rotation mapping: a case study for the Rur catchment, Germany. Int. J. Appl. Earth Obs. Geoinf. 61, 55–69 (2017)

    Google Scholar 

  8. J. Inglada, A. Vincent, M. Arias, C. Marais-Sicre, Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series. Remote Sens. 8(5), 362 (2016)

    Google Scholar 

  9. C. Conrad, M. Rahmann, M. Machwitz, G. Stulina, H. Paeth, S. Dech, Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan. Global Planet. Change 110, 88–98 (2013). https://doi.org/10.1007/s411018-0042-x

  10. B.T. Haworth , E. Biggs, J. Duncan, N. Wales, B. Boruff, E. Bruce, Geographic information and communication technologies for supporting smallholder agriculture and climate resilience. Climate 6(4), 97 (2018)

    Google Scholar 

  11. A. Avetisyan, Afghanistan Opium Survey 2017 Cultivation and Production. United Nation Office of Drugs and Crime. https://www.unodc.org/documents/crop-monitoring/Afghanistan/Afghan_opium_survey_2017_cult_prod_web.pdf (2017)

  12. M.S. Pervez, M. Budde, J. Rowland, Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sens. Environ. 149, 155–165 (2014)

    Google Scholar 

  13. P.C. Doraiswamy, P.W. Cook, Spring wheat yield assessment using NOAA AVHRR data. Can. J. Remote Sens. 21(1), 43–51 (1995)

    Google Scholar 

  14. K.S. Rawat, V.K. Sehgal, S.S. Ray, Retrieval and validation of soil moisture from FRS-1 data set of Radar Imaging Satellite (RISAT-1). Arab. J. Geosci. 10, 445–454 (2017)

    Google Scholar 

  15. K.S. Rawat, A.K. Mishra, R. Bhattacharyya, Soil erosion risk assessment and spatial mapping using LANDSAT7 ETM+, RUSLE and GIS-A case study. Arab. J. Geosci. 9, 288 (2016)

    Google Scholar 

  16. K.S. Rawat, A.K. Mishra, V.K. Sehgal, V.K. Tripathi, Comparative evaluation of horizontal accuracy of elevations of selected ground control points from ASTER and SRTM DEM with respect to CARTOSAT-1 DEM: a case study of district Shahjahanpur (Uttar Pradesh), India. Geocarto Int. 28(5), 439–452 (2013)

    Google Scholar 

  17. S. Singh, C. Singh, S. Mukherjee, Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: a remote sensing and GIS based approach. Open Geosci. 2(2), 124–131 (2010)

    Google Scholar 

  18. S.K. Singh, P.B. Laari, S.K. Mustak, P.K. Srivastava, S. Szabó, Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int 33(11), 1202–1222 (2018)

    Google Scholar 

  19. M. Kumar, D.M. Denis, S.K. Singh, S. Szabó, S. Suryavanshi, Landscape metrics for assessment of land cover change and fragmentation of a heterogeneous watershed. Remote Sens. Appl. Soc. Environ. 10, 224–233 (2018)

    Google Scholar 

  20. T. Shimrah, K. Sarma, O.G. Varga, S. Szilard, S.K. Singh, Quantitative assessment of landscape transformation using earth observation datasets in Shirui Hill of Manipur, India. Remote Sens. Appl. Soc. Environ. 15, 100237 (2019)

    Google Scholar 

  21. S.K. Singh, P.K. Srivastava, S. Szabó, G.P. Petropoulos, M. Gupta, T. Islam, Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using Earth Observation data-sets. Geocarto Int. 32(2), 113–127 (2017)

    Google Scholar 

  22. K.S. Rawat, A.K. Mishra, V.K. Tripathi, Sediment yield index mapping and prioritization of madia sub-watershed, sagar district of M.P. (India). Arab. J. Geosci. 7(8), 3131–3145 (2013)

    Google Scholar 

  23. K.S. Rawat, S. Pradhan, V.K. Tripathi, J. Lordwin, S.K. Singh, Statistical approach to evaluate groundwater contamination for drinking and irrigation suitability. Groundw. Sustain. Dev. 9, 1–12 (2019)

    Article  Google Scholar 

  24. K.S. Rawat, V.K. Sehgal, S.S. Ray, Downscaling of MODIS thermal imagery. The Egypt. J. Remote Sens. Space Sci. 22, 49–58 (2019). https://doi.org/10.1016/j.ejrs.2018.01.001

    Article  Google Scholar 

  25. K.S. Rawat, S.K. Singh, A. Bala, Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agric. Water Manag. 213(1), 922–933 (2019)

    Article  Google Scholar 

  26. K.S. Rawat, S.K. Singh, R.K. Pal, Synergetic methodology for estimation of soil moisture over agricultural area Using Landsat-8 and Sentinel-1 satellite data. Remote Sens. Appl. Soc. Environ. 15(2019), 100250 (2019)

    Google Scholar 

  27. K.S. Rawat, S.K. Singh, R.L. Ray, An integrated approach to estimate surface soil moisture in agricultural lands. Geocarto Int. (2019). https://doi.org/10.1080/10106049.2019.1678674

    Article  Google Scholar 

  28. K.S. Rawat, S.V. Mishra, S.K. Singh, Integration of earth observation data and spatial approach to delineate and manage aeolian sand-affected wasteland in highly productive lands of Haryana, India. Int. J. Geophys. (2018)

    Google Scholar 

  29. K.S. Rawat, S.K. Singh, Appraisal of soil conservation capacity using NDVI model based C-factor of RUSLE model for a semiarid ungauged watershed: a case study. Water Conserv. Sci. Eng. 3, 47–58 (2018)

    Article  Google Scholar 

  30. M.K. Arora, K. Agarwal, A program for sampling design for image classification accuracy assessment. Photogramm. J. Finl. 18(l), 33–43 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meshram, P.K., Rawat, K.S., Kumar, S., Singh, S.K. (2022). Crop-Type Classification Using Sentinel-2A and in Situ Data: Case Study of Shri Dungargarh Taluk of Rajasthan, India. In: Kolhe, M.L., Jaju, S.B., Diagavane, P.M. (eds) Smart Technologies for Energy, Environment and Sustainable Development, Vol 2. ICSTEESD 2020. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6879-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6879-1_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6878-4

  • Online ISBN: 978-981-16-6879-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics