Skip to main content

Finite Time Thermodynamic Investigation of a Solar-Boosted Irreversible OTEC

  • Conference paper
  • First Online:
Smart Technologies for Energy, Environment and Sustainable Development, Vol 1

Abstract

Ever-increasing population and its resultant stress on the energy sector are pushing us toward more cleaner and sustainable energy solutions. Ocean thermal energy conversion (OTEC) is one such clean energy technology, which has almost no emission and higher reliability. It utilizes the temperature gradient occurring in oceans due to the incident solar radiation to produce electricity. The efficiency and power output of OTEC systems can be increased with the addition of solar collectors for preheating the sea water. In order to design a practical solar-boosted OTEC system, it is imperative to understand the irreversibilities occurring in the heat exchangers of the systems. The limits of such irreversibilities are quantified using the well-established approach of the finite time thermodynamics. It was found out that for a simple OTEC system and a solar-boosted OTEC system, the limits for internal irreversibilities are in a range of 1.01–1.05 and 1.01–1.115, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Uehara et al., Shell-and plate type heat exchangers for OTEC plants. J. Solar Energy Engineering, Elsevier Ltd, 106(3), 286–290 (1984); 34(7), 1752–1758

    Google Scholar 

  2. S. Rao et al., Energy Technology Nonconventional, Renewable and Conventional (Khanna Publication, 2014)

    Google Scholar 

  3. H. Uehara, Y. Ikegami, Optimization of a closed-cycle OTEC system. J. Solar Energy Eng. 112, 247–256 (1990)

    Article  Google Scholar 

  4. B. Andresen, Current trends in finite-time thermodynamics. Angewandte Chemie Int. Edition-Wiley 50(12) (2011)

    Google Scholar 

  5. N. Yamada, A. Hoshi, Y. Ikegami, Performance simulation of solar-boosted ocean thermal energy conversion plant. Renew. Energy (2009)

    Google Scholar 

  6. F. Sun et al., Optimization design and exergy analysis of organic Rankine cycle in ocean thermal energy conversion. Appl. Ocean Res. Elsevier Ltd 35, 38–46 (2012)

    Article  Google Scholar 

  7. Y. Min-Hsiung, Y. Rong-Hua, Analysis of optimization in an OTEC plant using organic Rankine cycle. Renew. Energy 68, 25–34 (2014)

    Article  Google Scholar 

  8. R.H. Aungier, Turbine aerodynamics: axial-flow and radial-flow turbine design and analysis. ASME Press 236–240 (2006)

    Google Scholar 

  9. N. Khan, A. Kalair, N. Abas, A. Haider, Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 72, 590–604 (2017)

    Article  Google Scholar 

  10. R. Winston, Principles of solar concentrators of a novel design. Sol. Energy 16, 89–95 (1974)

    Article  Google Scholar 

  11. F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 0002–9505(43), 22–24 (1975)

    Article  Google Scholar 

  12. S.C. Kaushik, S.K. Tyagi, P. Kumar, Finite time thermodynamics of power and refrigeration cycles, in Finite Time Thermodynamics of Power and Refrigeration Cycles (Springer International Publishing, 2017)

    Google Scholar 

  13. S. Ramachandran, N. Kumar, M.V. Timmaraju, Thermodynamic analysis of solar low-temperature differential stirling engine considering imperfect regeneration and thermal losses. ASME. J. Sol. Energy Eng. 142(5), 051012 (2020)

    Google Scholar 

  14. D. Ahmet, S.S. Oguz et al., Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics. Prog. Energy Combust. Sci. 30(2), 175–217 (2004)

    Article  Google Scholar 

  15. A. McMahan, S.A. Klein, D.T. Reindl, A finite-time thermodynamic framework for optimizing solar-thermal power plants. J. Sol. Energy Eng. 129(4), 355–362 (2007)

    Article  Google Scholar 

  16. T. Yasunaga, Y. Ikegami, Finite-time thermodynamic model for evaluating heat engines in OTEC. Entropy 211, 22 (2020)

    Google Scholar 

  17. H. Aydin et al., Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating. Renew. Energy (Elsevier Ltd.) 72, 154–163 (2014)

    Article  Google Scholar 

  18. H.V. James, T.R. Lynn, L. Louis, An assessment of Florida’s ocean thermal energy conversion (OTEC) resource. Renew. Sustain. Energy Rev. 75 (2017)

    Google Scholar 

  19. C. Lingen, W. Chih, S. Fengrui, Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 24(4) (1999)

    Google Scholar 

  20. A. Durmayaz et al., Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics. Prog. Energy Combust. Sci. 30(2), 175–217 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramachandran, A., Arun Shal, U.B., Ramachandran, S. (2022). Finite Time Thermodynamic Investigation of a Solar-Boosted Irreversible OTEC. In: Kolhe, M.L., Jaju, S.B., Diagavane, P.M. (eds) Smart Technologies for Energy, Environment and Sustainable Development, Vol 1. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6875-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6875-3_68

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6874-6

  • Online ISBN: 978-981-16-6875-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics