Skip to main content

Cavity Quantum Electrodynamics with Laser-Cooled Atoms and Optical Nanofibers

  • Chapter
  • First Online:
Hybrid Quantum Systems

Part of the book series: Quantum Science and Technology ((QST))

  • 1081 Accesses

Abstract

A cavity quantum electrodynamics (QED) system, which consists of an atom and photons confined in a cavity, is one of the most basic hybrid systems. In the strong coupling regime of cavity QED, quantum interaction between atoms and photons manifests itself, and it becomes possible to generate, manipulate, and measure quantum states of atom and light. Therefore, a cavity QED system is an ideal testbed for investigating quantum nature of atom and light. Recently, efforts have been made toward realization of a quantum network by connecting multiple cavity QED systems by optical fibers. However, it is technically challenging to connect a large number of conventional Fabry–Perot cavities with high efficiency. Here, we review novel all-fiber cavity QED systems based on optical nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Haroche, Rev. Mod. Phys. 85, 1083 (2013)

    Google Scholar 

  2. R. Miller, T.E. Northup, K.M. Birnbaum, A. Boca, A.D. Boozer, H.J. Kimble, J. Phys. B At. Mol. Opt. Phys. 38, S551 (2005)

    Google Scholar 

  3. J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, H.J. Kimble, Nature 425, 268 (2003)

    Google Scholar 

  4. J. McKeever, A. Boca, A.D. Boozer, R. Miller, J.R. Buck, A. Kuzmich, H.J. Kimble, Science 303, 1992 (2004)

    Google Scholar 

  5. A. Boca, R. Miller, K.M. Birnbaum, A.D. Boozer, J. McKeever, H.J. Kimble, Phys. Rev. Lett. 93, 233603 (2004)

    Google Scholar 

  6. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87 (2005)

    Google Scholar 

  7. A. Ourjoumtsev, A. Kubanek, M. Koch, C. Sames, P.W.H. Pinkse, G. Rempe, K. Murr, Nature 474, 623 (2011)

    Google Scholar 

  8. A. Reiserer, S. Ritter, G. Rempe, Science 342, 1349 (2013)

    Google Scholar 

  9. A. Reiserer, N. Kalb, G. Rempe, S. Ritter, Nature 508, 237 (2014)

    Google Scholar 

  10. B. Hacker, S. Welte, G. Rempe, S. Ritter, Nature 536, 193 (2016)

    Google Scholar 

  11. H.J. Kimble, Nature 453, 1023 (2008)

    Google Scholar 

  12. A. Reiserer, G. Rempe, Rev. Mod. Phys. 87, 1379 (2015)

    Google Scholar 

  13. D.F. Walls, G.J. Milburn, Quantum Optics, 2nd edn. (Springer, Berlin, Germany, 2008)

    Google Scholar 

  14. P. Meystre, M. Sargent III, Elements of Quantum Optics, 4th edn. (Springer, Berlin, Germany, 2007)

    Google Scholar 

  15. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, (Springer, Berlin, Germany, 1999); H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-classical Fields, (Springer, Berlin, Germany, 2008)

    Google Scholar 

  16. A. S. Parkins, in Fundamentals of Picoscience, Chap. 34, ed. by K.D. Sattler (CRC Press, Boca Raton, Florida, 2013)

    Google Scholar 

  17. P. Forn-DĂ­az et al., Rev. Mod. Phys. 91, 025005 (2019)

    Google Scholar 

  18. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    Google Scholar 

  19. M.D. Eisaman et al., Rev. Sci. Instrum. 82, 071101 (2011)

    Google Scholar 

  20. C.K. Law, H.J. Kimble, J. Mod. Opt. 44, 2067 (1997)

    Google Scholar 

  21. H.G. Barros et al., New J. Phys. 11, 103004 (2009)

    Google Scholar 

  22. A.S. Parkins et al., Phys. Rev. Lett. 71, 3095 (1993)

    Google Scholar 

  23. J. McKeever et al., Science 303, 1992 (2004)

    Google Scholar 

  24. M. Keller et al., Nature 431, 1075 (2004)

    Google Scholar 

  25. M. Hijlkema et al., Nature Phys. 3, 253 (2007)

    Google Scholar 

  26. H. Goto et al., Phys. Rev. A 99, 053843 (2019)

    Google Scholar 

  27. H. Goto, K. Ichimura, Phys. Rev. A 82, 032311 (2010)

    Google Scholar 

  28. N. NĂ©met et al., Phys. Rev. Appl. (submitted)

    Google Scholar 

  29. C.W. Gardiner, M.J. Collett, Phys. Rev. A 31, 3761 (1985)

    Google Scholar 

  30. C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, (Springer, Berlin, Germany, 2004)

    Google Scholar 

  31. A. Goban, Ph.D. thesis, Caltech (2015)

    Google Scholar 

  32. S. Ritter et al., Nature 484, 195 (2012)

    Google Scholar 

  33. G. Brambilla, J. Opt. 12, 043001 (2010)

    Google Scholar 

  34. P. Solano et al., Adv. At. Mol. Opt. Phys. 66, 439 (2017)

    Google Scholar 

  35. F. Le Kien et al., Phys. Rev. A 70, 063403 (2004)

    Google Scholar 

  36. E. Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010)

    Google Scholar 

  37. F. Le Kien et al., J. Phys. Soc. J 74, 910 (2005)

    Google Scholar 

  38. C. Lacroûte et al., New J. Phys. 14, 023056 (2012)

    Google Scholar 

  39. A. Goban et al., Phys. Rev. Lett. 109, 033603 (2012)

    Google Scholar 

  40. F. Le Kien, K. Hakuta, Phys. Rev. A 80, 053826 (2009)

    Google Scholar 

  41. C. Wuttke et al., Opt. Lett. 37, 1949 (2012)

    Google Scholar 

  42. S. Kato et al., Phys. Rev. Lett. 115, 093603 (2015)

    Google Scholar 

  43. J.D. Love et al., IEEE Proc. 138, 343 (1991)

    Google Scholar 

  44. R. Nagai, T. Aoki, Opt. Express 22, 28427 (2014)

    Google Scholar 

  45. S. Kato et al., Nat. Commun. 10, 1160 (2019)

    Google Scholar 

  46. D.H. White et al., Phys. Rev. Lett. 122, 253602 (2019)

    Google Scholar 

  47. A. Serafini et al., Phys. Rev. Lett. 96, 010503 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aoki, T. (2021). Cavity Quantum Electrodynamics with Laser-Cooled Atoms and Optical Nanofibers. In: Hirayama, Y., Ishibashi, K., Nemoto, K. (eds) Hybrid Quantum Systems. Quantum Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-6679-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6679-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6678-0

  • Online ISBN: 978-981-16-6679-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics