Skip to main content

Safety Issues, Environmental Impacts, and Health Effects of Biopolymers

  • Living reference work entry
  • First Online:
Handbook of Biopolymers

Abstract

Petroleum-based polymers are linked to a variety of health and environmental issues throughout their life cycle, such as pollution, greenhouse gas emissions, persistence in marine and terrestrial habitats, etc. On the other hand, biopolymers are a fast-expanding class of polymeric materials that are frequently offered as substitutes for traditional plastics made from petroleum. However, there is a need to assess the true health and environmental impact of using biopolymers because they have also been connected to significant health and environmental problems like greenhouse gas emissions and adverse land use change. Though numerous evaluations include biopolymers, very few fully and concurrently analyze the advantages and disadvantages of using biopolymers for the environment. The current chapter deals with the safety aspects of biopolymers in human health and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Z. Adamis, In vitro and in vivo assessment of the pulmonary toxicity of cellulose. J. Appl. Toxicol. 17(2), 137–141 (1997)

    Article  CAS  Google Scholar 

  • A. Agrawal, R. Pandey, B. Sharma, Water pollution with special reference to pesticide contamination in India. J. Water Resour. Prot. 2(5), 432–448 (2010). https://doi.org/10.4236/jwarp.2010.25050

    Article  CAS  Google Scholar 

  • R. Ahorsu, F. Medina, M. Constanti, Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11, 3366 (2018). https://doi.org/10.3390/en11123366

    Article  CAS  Google Scholar 

  • S.M. Ahsan, M. Thomas, K.K. Reddy, S.G. Sooraparaju, A. Asthana, I. Bhatnagar, Chitosan as biomaterial in drug delivery and tissueengineering. Int. J. Biol. Macromol. 110, 97–109 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.14070

    Article  CAS  Google Scholar 

  • K. Akio, M. Kazunori, G. Hidetada, A. Mitsuru, L. Hidetoshi, E. Takeshi, J. Bioact. Compat. Polym. 23, 473 (2008)

    Article  Google Scholar 

  • A. Alaoui et al., Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution. Sep. Purif. Technol. 154, 281–289 (2015)

    Article  CAS  Google Scholar 

  • R. Ameratunga, D. Gillis, M. Gold, et al., Evidence refuting the existence of autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA). J. Allergy Clin. Immunol. Pract. 5, 1551–1555.e1 (2017)

    Article  Google Scholar 

  • I. Anastopoulos et al., Chitin adsorbents for toxic metals: a review. Int. J. Mol. Sci. 18(1), 114 (2017)

    Article  Google Scholar 

  • A.K. Andrianov, L.G. Payne, Adv. Drug. Deliv. Rev. 31, 185 (1998)

    Article  CAS  Google Scholar 

  • M. Armand, The history of polymer electrolytes. Solid State Ionics 69(3–4), 309–319 (1994)

    Article  CAS  Google Scholar 

  • G. Atiwesh, A. Mikhael, C.C. Parrish, J. Banoub, T.-A.T. Le, Environmental impact of bioplastic use: a review. Heliyon 7(9), e07918 (2021)

    Article  CAS  Google Scholar 

  • J. Baranwal, B. Barse, A. Fais, G.L. Delogu, A. Kumar, Biopolymer: a sustainable material for food and medical applications. Polymer 14, 983 (2022)

    Article  CAS  Google Scholar 

  • F. Barillari, F. Chini, Biopolymers - sustainability for the automotive value-added chain. ATZ Worldw 122, 36–39 (2020). https://doi.org/10.1007/s38311-020-0298-6

    Article  Google Scholar 

  • T. Barker, I. Bashmakov, L. Berstein, J.E. Bogner, P. Bosch, R. Dave, O. Davidson, B.S. Fisher, S. Gupta, et al., Technical summary, in Climate Change(2007): Mitigation. Contribution of Working Group III to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change, ed. by B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, L. A. Meyer, (Cambridge University Press, Cambridge/New York, 2007)

    Google Scholar 

  • A. Basu, A.J. Domb, Recent advances in polyanhydride based biomaterials. Adv. Mater. 1706815 (2018). https://doi.org/10.1002/adma.201706815

  • A. Bharadwaz, A.C. Jayasuriya, Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater. Sci. Eng. C. 110 (2020)

    Google Scholar 

  • E. Bioplasticsb, Biopolymers Facts and Statistics. Institute for Bioplastics and Composites. Hochschule Hannover University of Applied Sciences and Arts. Available at: 2016. https://www.google.co.in/webhp. 27 January 2017

  • G. Bishop, D. Styles, P.N.L. Lens, Environmental performance comparison of bioplastics and petrochemical plastics: a review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycl. 168, 105451 (2021)

    Article  CAS  Google Scholar 

  • C.M. Blettler, E. Abrial, F.R. Khan, N. Sivri, L.A. Espinola, Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps. Water Res. 143, 416–424 (2018)

    Google Scholar 

  • J. Brizga, K. Hubacek, K. Feng, The unintended side effects of bioplastics: carbon, land, and water footprints. One Earth 3(1), 45–53 (2020)

    Article  Google Scholar 

  • A. Buis, The atmosphere: getting a handle on carbon dioxide. NASA Glob. Clim. Change. October 9 (2019)

    Google Scholar 

  • K. Burg, Poly(α-ester)s, in Natural and Synthetic Biomedical Polymers (2014), pp. 115–121

    Google Scholar 

  • J. Burke, I. Yannas, W. Quinby, C. Bondoc, W. Jung, Ann. Surg. 194, 413 (1981)

    Article  CAS  Google Scholar 

  • L.R.B. Cabral, L.N. Teixeira, R.P. Gimenez, A.P.D. Demasi, R.B. de Brito Junior, V.C. de Araújo, E.F. Martinez, Effect of hyaluronic acid and poly-l-lactic acid dermal fillers on collagen synthesis: an in vitro and in vivo study. Clin. Cosmet. Investig. Dermatol. 13, 701–710 (2020)

    Article  CAS  Google Scholar 

  • A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  CAS  Google Scholar 

  • R.F. Centeno, V.L. Young, Clinical anatomy in aesthetic gluteal body contouring surgery. Clin. Plast. Surg. 33, 347–358 (2006)

    Google Scholar 

  • Y.J. Chan et al., A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155(1), 1–18 (2009)

    Article  CAS  Google Scholar 

  • M. Charles-Harris, M.A. Koch, M. Navarro, et al., A PLA/calcium phosphate degradable composite material for bone tissue engineering: an in vitro study. J Mater Sci: Mater Med 19, 1503–1513 (2008)

    Google Scholar 

  • C. Chen, C.H. Yu, Y.C. Cheng, P.H.F. Yu, M.K. Cheung, Biomaterials 27, 4804 (2006)

    Article  CAS  Google Scholar 

  • Y. Chen, S.-T. Hung, E. Chou, H.-S. Wu, Review of polyhydroxyalkanoates materials and other biopolymers for medical applications. Mini Rev. Org. Chem. 15, 105–121 (2018). https://doi.org/10.2174/1570193X14666170721153036

    Article  CAS  Google Scholar 

  • H. Cheng et al., Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater. Des. 130, 452–458 (2017)

    Article  CAS  Google Scholar 

  • F.M.D. Chequer et al., Textile dyes: dyeing process and environmental impact, in Eco-Friendly Textile Dyeing and Finishing, ed. by M. Günay, (InTech, Rijeka, 2013), p. Ch. 06

    Google Scholar 

  • A. Chilkoti, T. Christensen, J.A. Mackay, Curr. Opin. Chem. Biol. 10, 652 (2006)

    Article  CAS  Google Scholar 

  • G. Ciardelli, L. Corsi, M. Marcucci, Membrane separation for wastewater reuse in the textile industry. Resour. Conserv. Recycl. 31(2), 189–197 (2001)

    Article  Google Scholar 

  • S. Colafrancesco, C. Perricone, R. Priori, et al., Sjögren’s syndrome: another facet of the autoimmune/inflammatory syndrome induced by adjuvants (ASIA). J. Autoimmun. 51, 10–16 (2014)

    Article  CAS  Google Scholar 

  • R.T. Cullen, Tumorigenicity of cellulose fibers injected into the rat peritoneal cavity. Inhal. Toxicol. 14(7), 685–703 (2002)

    Article  CAS  Google Scholar 

  • M. d’Halluin et al., Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustain. Chem. Eng. 5(2), 1965–1973 (2017)

    Article  Google Scholar 

  • R.S. Dariani et al., Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik Int. J. Light Electron Opt. 127(18), 7143–7154 (2016)

    Article  CAS  Google Scholar 

  • R.S. Dassanayake et al., Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths. Cellulose 23(2), 1363–1374 (2016)

    Article  CAS  Google Scholar 

  • J.M.L. Dias, P.C. Lemos, L.S. Serafim, C. Oliveira, M. Eiroa, M.G.E. Albuquerque, Macromol. Biosci. 6, 885 (2006)

    Article  CAS  Google Scholar 

  • I. Dmour, M.O. Taha, Natural and semisynthetic polymers in pharmaceutical nanotechnology, in Organic Materials as Smart Nanocarriers for Drug Delivery, ed. by A. M. Grumezescu, (Elsevier, Amsterdam, 2018), pp. 35–100

    Chapter  Google Scholar 

  • V. Dodane, V.D. Vilivalam, Pharm. Sci. Technol. Today 1, 246 (1998)

    Article  CAS  Google Scholar 

  • B. Doshi, M. Sillanpää, S. Kalliola, A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018)

    Article  CAS  Google Scholar 

  • A. Duarte, A. Hedo, J. Pradel, V. Gómez, Complicación tardía tras infiltración de biopolímeros en glúteos. Cirugía Plástica Ibero Latinoamericana 42, 385–389 (2016)

    Google Scholar 

  • H.-G. Elias, An Introduction to Polymer Science (VCH, Weinheim, 1997)

    Google Scholar 

  • M.S. Eroglu, O.E. Toksoy, M.E. Cansever, B.M. Sennaroglu, Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy. Curr. Top. Med. Chem. 17, 1507–1520 (2017)

    Article  CAS  Google Scholar 

  • S.L. Ezeoha, Production of biodegradable plastic packaging film from cassava starch. IOSR J. Eng. 3, 14–20 (2013)

    Article  Google Scholar 

  • M. Farina, C.Y.X. Chua, A. Ballerini, U. Thekkedath, J.F. Alexander, J.R. Rhudy, G. Torchio, D. Fraga, R.R. Pathak, M. Villanueva, C.S. Shin, J.A. Niles, R. Sesana, D. Demarchi, A.G. Sikora, G.S. Acharya, A.O. Gaber, J.E. Nichols, A. Grattoni, Transcutaneously refillable, 3D-printed biopolymeric encapsulation system for the transplantation of endocrine cells. Biomaterials 177, 125–138 (2018)

    Article  CAS  Google Scholar 

  • L. Francis, D. Meng, J.C. Knowles, I. Roy, A.R. Boccaccini, Acta Biomater. 6, 2773–2786 (2010)

    Google Scholar 

  • K. Fu, D.W. Pack, A.M. Kilbanov, R. Langer, Pharm. Ras. 17, 100–106 (2000)

    Google Scholar 

  • A. Gagliardi, E. Giuliano, E. Venkateswararao, M. Fresta, S. Bulotta, V. Awasthi, D. Cosco, Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 12, 17 (2021). https://doi.org/10.3389/fphar.2021.601626

    Article  CAS  Google Scholar 

  • A.J. Gavasane, H.A. Pawar, Synthetic biodegradable polymersused in controlled drug delivery system: an overview. Clin. Pharmacol. Biopharm. 3(2), 1–7 (2014). https://doi.org/10.4172/2167-065X.100012167

    Article  Google Scholar 

  • J. Gesthuizen, T. Robert, Nachwachsende Rohstoffe: “Es gibt viele Monomere, die über neuartige Strukturelemente verfügen” (2018). Available at: https://www.farbeundlack.de/Wissenschaft-Technik/Nachwachsende-Rohstoffe-Es-gibt-viele-Monomere-die-ueber-neuartige-Strukturelemente-verfuegen. Accessed 1 Nov 2018

  • G. Gorrasi, R. Pantani, Hydrolysis and biodegradation of poly(lactic acid), in Synthesis, Structure and Properties of Poly(lactic acid) (2018), pp. 119–151. https://doi.org/10.1007/12_2016_12

  • E. Grassl, R.T. Tranquillo, in Scaffolds in Tissue Engineering, ed. by X. P. Ma, J. Elisseeeff, (CRC Press, Boca Raton, 2006), p. 61

    Google Scholar 

  • M. Grunert, W.T. Winter, Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10(1–2), 27–30 (2002)

    Article  CAS  Google Scholar 

  • P.A. Gunatillake, R. Adhikari, Eur. Cell. Mater. 5, 1 (2003)

    Article  CAS  Google Scholar 

  • J.N. Hahladakis, C.A. Velis, R. Weber, E. Iacovidou, P. Purnell, An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018). https://doi.org/10.1016/j.jhazmat.2017.10.014

    Article  CAS  Google Scholar 

  • T.P. Haider, C. Völker, J. Kramm, K. Landfester, F.R. Wurm, Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 58(1), 50–62 (2019). https://doi.org/10.1002/anie.201805766

    Article  CAS  Google Scholar 

  • D. Hawkes, J. Benhamu, T. Sidwell, et al., Revisiting adverse reactions to vaccines: a critical appraisal of autoimmune syndrome induced by adjuvants (ASIA). J. Autoimmun. 59, 77–84 (2015)

    Article  Google Scholar 

  • S. Hein, C.H. Ng, S. Chandrkrachang, W.F. Stevens, A systematic approach to qualitu assessment system of chitosan in chitin and chitosan in life science, in Proceedings of the Eighth International Chitin and Chitosan Conference and Fourth Asia Pacific Chitin and Chitosan Symposium, Yamaguchi, Japan, September 21–23, 2000, ed. by K. Kurita, T. Uragami, T. Fukamizo, (Kodansha Scientific Limites, 2001), p. 327

    Google Scholar 

  • L.A. Heinrich, Future opportunities for bio-based adhesives – advantages beyond, Green Chem. 21, 1866–1888 (2019)

    Google Scholar 

  • J. Heller, R. Gurny, Poly (orthoesters), in Encyclopaedia of Controllled Drug Delivery, vol. 2, ed. by E. Mathowitz, (Wiley, New York, 1999), p. 852

    Google Scholar 

  • C.L. Hsueh et al., Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58(10), 1409–1414 (2005)

    Article  CAS  Google Scholar 

  • S.G. Hu, C.H. Jou, M.C. Yang, Biomaterials 24, 2685 (2003)

    Article  CAS  Google Scholar 

  • J. Huang et al., Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants. Sep. Purif. Technol. 125, 83–89 (2014)

    Article  CAS  Google Scholar 

  • L. Illum, I. Jabbal-Gill, M. Hinchcliffe, A.N. Fisher, M.S.S. Davis, Adv. Drug Deliv. Rev. 51, 81 (2001)

    Article  CAS  Google Scholar 

  • M. Iovu, G. Dumais, P. du Souich, Anti-inflammatory activity of chondroitin sulfate. Osteoarthr. Cartil. 16(Suppl 3), S14–S18 (2008)

    Article  Google Scholar 

  • M. Işık, D.T. Sponza, Biological treatment of acid dyeing wastewater using a sequential anaerobic/aerobic reactor system. Enzym. Microb. Technol. 38(7), 887–892 (2006)

    Article  Google Scholar 

  • A. Jamshaid et al., Cellulose-based materials for the removal of heavy metals from wastewater – an overview. ChemBioEng Rev. 4(4), 240–256 (2017)

    Article  CAS  Google Scholar 

  • G.K. Jani, D.P. Shah, V.D. Prajapati, V.C. Jain, Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J. Pharm. Sci. 4(Suppl 5), 309–332 (2009)

    Google Scholar 

  • R. Jayakumar, N. New, S. Tokura, H. Tamura, Int. J. Biol. Macromol. 40, 175 (2007)

    Article  CAS  Google Scholar 

  • A.D. Jenkins, P. Kratochvíl, R.F.T. Stepto, U.W. Suter, Glossary of basic terms in polymer science (IUPAC recommendations 1996). Pure Appl. Chem. 68, 2287–2311 (1996)

    Article  CAS  Google Scholar 

  • J.H. Jeon, M.V. Thomas, D.A. Puleo, Int. J. Pharm. 340, 6 (2007)

    Article  CAS  Google Scholar 

  • C.H. Jeong, D.H. Kim, J.H. Yune, H.C. Kwon, D.M. Shin, H. Sohn, K.H. Lee, B. Choi, E.S. Kim, J.H. Kang, E.K. Kim, S.G. Han, In vitro toxicity assessment of crosslinking agents used in hyaluronic acid dermal filler. Toxicol. In Vitro 70, 105034 (2021)

    Article  CAS  Google Scholar 

  • S. Jesus, E.H. Fragal, A.F. Rubira, E.C. Muniz, A.J. Valente, O. Borges, The inclusion of chitosan in poly-ε-caprolactone nanoparticles: impact on the delivery system characteristics and on the adsorbedovalbumin secondary structure. AAPS Pharm. Sci. Tech. 19(1), 101–113 (2018). https://doi.org/10.1208/s12249-017-0822-171

    Article  CAS  Google Scholar 

  • C.K.W. Jim, J.W.Y. Lam, A. Qin et al., Ferrocene-Decorated hyperbranched poly(aroxycarbonylphenylene)s: synthesis, light refraction, photopatterning and precursor to magnetic ceramics. J Inorg Organomet Polym. 23, 147–157 (2013)

    Google Scholar 

  • D.L. Kaplan et al., Polymer. Systems-Synthesis and Utility, ‘Naturally Occurring Biodegradable Polymers’, ed. by G. Swift, R. Narayan (Hanser Publishing, New York, 1994)

    Google Scholar 

  • T. Karthik, R. Rathinamoorthy, Sustainable biopolymers in textiles: an overview, in Handbook of Ecomaterials (2017), pp. 1e27. wisdom.ai, London

    Google Scholar 

  • S. Kaza, L. Yao, P. Bhada-Tata, Van F. Woerden, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (The World Bank, 2018)

    Google Scholar 

  • O. Kehinde, O.J. Ramonu, K.O. Babaremu, L.D. Justin, Plastic wastes: environmental hazard and instrument for wealth creation in Nigeria. Heliyon 6(10), e05131 (2020)

    Article  CAS  Google Scholar 

  • S. Khanna, A.K. Srivastava, Process Biochem. 40, 607 (2005)

    Article  CAS  Google Scholar 

  • S. Koltzenburg, M. Maskos, O. Nuyken, Polymere: Synthese, Eigenschaften und Anwendungen (Springer, Berlin, 2014)

    Book  Google Scholar 

  • T. Kovacs, An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4(3), 255–270 (2010)

    Article  CAS  Google Scholar 

  • S. Kulkarni Vishakha, D. Butte Kishor, S. Rathod Sudha, Natural polymers – a comprehensive review. Int. J. Res. Pharm. Biomed. Sci. 3(4), 1597–1613 (2012)

    CAS  Google Scholar 

  • R.A. Langer, J. Pharm. Sci. 86, 1464 (1997)

    Article  Google Scholar 

  • R.C. Law, 5. Applications of cellulose acetate 5.1 cellulose acetate in textile application. Macromol. Symp. 208, 255e266 (2004)

    Article  Google Scholar 

  • C. Le Quéré et al., The global carbon budget 1959–2011. Earth Syst. Sci. Data 5(2), 1107–1157 (2012)

    Google Scholar 

  • D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443 (2014)

    Article  CAS  Google Scholar 

  • Y. Li et al., Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 91(2), 361–368 (2013)

    Article  CAS  Google Scholar 

  • H. Lim et al., Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem. Commun. 4, 463–465 (2006)

    Article  Google Scholar 

  • M.M.D. Lima, R. Borsali, Rodlike cellulose microcrystals: structure, properties, and applications. Macromol. Rapid Commun. 25(7), 771–787 (2004)

    Article  Google Scholar 

  • L. LinShu, Y.J. Won, P.H. Cooke, D.R. Coffin, M.L. Fishman, K.B. Hicks, P.X. Ma, Biomaterials 25, 3201 (2004)

    Article  Google Scholar 

  • L. Liu et al., Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain. Chem. Eng. 3(3), 432–442 (2015)

    Article  CAS  Google Scholar 

  • J. Lovett, de F. Bie, D. Visser, Sustainable sourcing of feedstocks for bioplastics. Clarifying sustainability aspects around feedstock use for the production of bioplastics. Total Corbion PLA, Whitepaper (Version 1.2) (2017)

    Google Scholar 

  • D.R. Lu, C.M. Xiao, S.J. Xu, eXPRESS Polym. Lett. 3, 366 (2009)

    Google Scholar 

  • S. Maghsoudi, B. Taghavi Shahraki, N. Rabiee, Y. Fatahi, R. Dinarvand, M. Tavakolizadeh, S. Ahmadi, M. Rabiee, M. Bagherzadeh, A. Pourjavadi, H. Farhadnejad, M. Tahriri, T.J. Webster, L. Tayebi, Burgeoning polymer nano blends for improved controlled drug release: a review. Int. J. Nanomedicine 15, 4363–4392 (2020). https://doi.org/10.2147/IJN.S252237

    Article  CAS  Google Scholar 

  • R.-D. Maier, M. Schiller, Handbuch Kunststoff Additive (Carl Hanser Verlag, München, 2016)

    Book  Google Scholar 

  • H.K. Makadia, S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3), 1377–1397 (2011). https://doi.org/10.3390/polym3031377. Epub 2011 Aug 26. PMID: 22577513; PMCID: PMC3347861

    Article  CAS  Google Scholar 

  • E. Malikmammadov, T.E. Tanir, A. Kiziltay, V. Hasirci, N. Hasirci, PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 29(7–9), 863–893 (2018). https://doi.org/10.1080/09205063.2017.1394711

    Article  CAS  Google Scholar 

  • H.M. Mansour, M. Sohn, A. Al-Ghananeem, P.P. De Luca, Int. J. Mol. Sci. 11, 3298 (2010)

    Article  CAS  Google Scholar 

  • J.A. Martins, A.A. Lach, H.L. Morris, A.J. Carr, P.A. Mouthuy, Polydioxanone implants: a systematic review on safety and performance in patients. J. Biomater. Appl. 34(7), 902–916 (2020). https://doi.org/10.1177/0885328219888841. Epub 2019 Nov 26. PMID: 31771403; PMCID: PMC7044756

    Article  Google Scholar 

  • M. Matheswaran, T. Raju, Destruction of methylene blue by mediated electrolysis using two-phase system. Process Saf. Environ. Prot. 88(5), 350–355 (2010)

    Article  CAS  Google Scholar 

  • Y.I. Matveev, J.J.G. van Soest, C. Nieman, L.A. Wasserman, V.A. Protserov, M. Ezernitskaja, V.P. Yuryev, Carbohyr. Polym. 44, 151 (2001)

    Article  CAS  Google Scholar 

  • M. Merodio, J.M. Irache, F. Valamanesh, M. Mirshani, Biomaterials 23, 1587 (2002)

    Article  CAS  Google Scholar 

  • V.B. Morhenn, G. Lemperle, R.L. Gallo, Phagocytosis of different particulate dermal filler substances by human macrophages and skin cells. Dermatol. Surg. 28, 484–490 (2002)

    Google Scholar 

  • M. Mori, M. Yamaguchi, S. Sumitoma, Y. Takai, Acta Histochem. Cytochem. 37, 1 (2004)

    Article  CAS  Google Scholar 

  • L. Muhamad II, S. Selvakumaran, N.A.M. Lazim, Designing poly-meric nanoparticles for targeted drug delivery system, in Nanomedicine, vol. 287, (2014), p. 287

    Google Scholar 

  • F. Munarin, S.G. Guerreiro, M.A. Grellier, M.C. Tazni, M.A. Barbosa, P. Petrini, P.L. Granja, Biomacromolecules 12, 568 (2011)

    Article  CAS  Google Scholar 

  • T. Muslim, M.H. Rahman, H.A. Begum, M.A. Rahman, Chitosanand carboxymethyl chitosan from fish scales of Labeo rohita. Dhaka Univ. J. Sci. 61(1), 145–148 (2013). https://doi.org/10.3329/dujs.v61i1.1511669

    Article  CAS  Google Scholar 

  • A. Muxika, A. Etxabide, J. Uranga, P. Guerrero, K. De La Caba, Chitosan as a bioactive polymer: processing, properties and appli-cations. Int. J. Biol. Macromol. 105, 1358–1368 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.08768

    Article  CAS  Google Scholar 

  • S. Nanda, B.R. Patra, R. Patel, J. Bakos, A.K. Dalai, Innovations in applications and prospects of bioplastics and biopolymers: a review. Environ. Chem. Lett. 20(1), 379–395 (2022). https://doi.org/10.1007/s10311-021-01334-4.. Epub 2021 Nov 29. PMID: 34867134; PMCID: PMC8629338

    Article  CAS  Google Scholar 

  • A.Z. Naser, I. Deiab, B.M. Darras, (Lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 11(28), 17151–17196 (2021). https://doi.org/10.1039/D1RA02390J

    Article  CAS  Google Scholar 

  • R.E. Neuendorf, E. Saiz, A.P. Tomsia, R.O. Ritchie, Adhesion between biodegradable polymers and hydroxyapatite: relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomater. 4, 1288–1296 (2008). https://doi.org/10.1016/j.actbio.2008.04.006

    Article  CAS  Google Scholar 

  • D. Notta-Cuvier, J. Odent, R. Delille, M. Murariu, F. Lauro, J.M. Raquez, B. Bennani, P. Dubois, Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polym. Test. 36, 1–9 (2014)

    Article  CAS  Google Scholar 

  • T.F.M. Ojeda, E. Dalmolin, M.M.C. Forte, R.J.S. Jacques, F.M. Bento, F.A.O. Camargo, Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym. Degrad. Stab. 94, 965–970 (2009)

    Article  CAS  Google Scholar 

  • H. Onishi, H. Takahashi, M. Yoshiyasu, Y. Machida, Drug Dev. Ind. Pharm. 27, 659 (2001)

    Article  CAS  Google Scholar 

  • R.J. Ouellette, Synthetic polymers, in Organic Chemistry Study Guide (2015), pp. 587–601. https://doi.org/10.1016/B978-0-12-801889-7.00028-5

  • E.-M. Pacheco-Quito, R. Ruiz-Caro, M.D. Veiga, Carrageenan: drug delivery systems and other biomedical applications. Mar. Drugs 18(11), 583 (2020)

    Article  CAS  Google Scholar 

  • J.E. Pachón S, M.C. Salazar, A.M. Pores, V.Z. Rizo, Clinical and immunological characteristics of patients with biopolymers and autoimmune inflammatory syndrome induced by adjuvants. Plast. Reconstr. Surg. Glob. Open 9(9), e3796 (2021)

    Article  Google Scholar 

  • K. Pakawadee, Fermentation of sweet sorghum into added value biopolymer of polyhydroxyalkanoates (PHAs), in Products and Applications of Biopolymers, ed. by C. Johannes, R. Verbeek, (Intech, Croatia, 2012), pp. 41–60

    Google Scholar 

  • S.-B. Park, E. Lih, K.-S. Park, Y.K. Joung, D.K. Han, Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 68, 77–105 (2017). https://doi.org/10.1016/j.progpolymsci.2016.12.003

    Article  CAS  Google Scholar 

  • H. Patel, R.T. Vashi, Removal of Congo red dye from its aqueous solution using natural coagulants. J. Saudi Chem. Soc. 16(2), 131–136 (2012)

    Article  CAS  Google Scholar 

  • N.A. Pattanashetti, G.B. Heggannavar, M.Y. Kariduraganavar, Smart biopolymers and their biomedical applications. Procedia Manuf. 12, 263–279 (2017). https://doi.org/10.1016/j.promfg.2017.08.030

    Article  Google Scholar 

  • B.L. Peng, N. Dhar, H.L. Liu, K.C. Tam, Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can. J. Chem. Eng. 89(85), 1191–1206 (2011)

    Article  CAS  Google Scholar 

  • O. Pillai, R. Panchagnula, Polymers in drug delivery. Curr. Opin. Chem. Biol. 5, 447–451 (2001)

    Article  CAS  Google Scholar 

  • G.D. Prestwich, D.M. Marecak, J.F. Marecek, K.P. Vercruysse, M.R. Ziebell, J. Control. Release 53, 93 (1998)

    Article  CAS  Google Scholar 

  • R. Quack, C. Yaacoub, Klebstoffe aus nachwachsenden Rohstoffen. Perspektiven und Grenzen am Beispiel der Bereiche Konsumerprodukte, Papierherstellung und -verarbeitung, Lebensmittelverpackung, Pharmazie und Medizin: Studie (Franz-Patat-Zentrum, Braunschweig, 1998)

    Google Scholar 

  • I.C. Radu, A. Hudita, C. Zaharia, B. Galateanu, H. Iovu, E. Tanasa (Vasile), S. Georgiana Nitu, O. Ginghina, C. Negrei, A. Tsatsakis, K. Velonia, M. Shtilman, M. Costache, Poly(3-hydroxybutyrate-CO-3-hydroxyvalerate) PHBHV biocompatible nanocarriers for 5-FU delivery targeting colorectal cancer. Drug Deliv. 26, 318–327 (2019)

    Article  CAS  Google Scholar 

  • S. Raghu, C.A. Basha, Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. J. Hazard. Mater. 149(2), 324–330 (2007)

    Article  CAS  Google Scholar 

  • M. Rahman, M.R. Hasan, Synthetic biopolymers, in Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series, ed. by M. Jafar Mazuder, H. Sheardown, A. Al-Ahmed, (Springer, Cham, 2019), pp 1–43

    Google Scholar 

  • N. Reddy, R. Reddy, Q. Jiang, Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 33, 362–369 (2015). https://doi.org/10.1016/j.tibtech.2015.03.008

    Article  CAS  Google Scholar 

  • M. Roman, S. Dong, A. Hirani, Y.W. Lee, Cellulose nanocrystals for drug delivery, in Polysaccharide Materials: Performance by Design, ACS Symposium Series 1017, ed. by K. J. Edgar, T. Heinze, C. M. Buchanan, (American Chemical Society, Washington, DC, 2009), pp. 81–91

    Google Scholar 

  • F.L. Rosario-Ortiz, E.C. Wert, S.A. Snyder, Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Res. 44(5), 1440–1448 (2010)

    Article  CAS  Google Scholar 

  • J.-G. Rosenboom, R. Langer, G. Traverso, Bioplastics for a circular economy. Nat. Rev. Mater. 7(2), 117–137 (2022). https://doi.org/10.1038/s41578-021-00407-8

    Article  Google Scholar 

  • V. Rossi, N. Cleeve-Edwards, L. Lundquist, U. Schenker, C. Dubois, S. Humbert, O. Jolliet, Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. J. Clean. Prod. 86, 132–145 (2015). https://doi.org/10.1016/j.jclepro.2014.08.049

    Article  Google Scholar 

  • P.M. Royce, T. Kato, K. Ohsaki, A. Miura, J. Dematol. Sci. 10, 42 (1995)

    Article  CAS  Google Scholar 

  • C.-Q. Ruan, M. Strømme, J. Lindh, Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr. Polym. 181, 200–207 (2018)

    Article  CAS  Google Scholar 

  • T.A. Saleh, V.K. Gupta, Nanomaterial and Polymer Membranes: Synthesis, Characterization, and Applications (Elsevier, Amsterdam, 2016)

    Google Scholar 

  • A.J. Salgado, M.E. Gomes, A. Chou, O.P. Coutinho, R.L. Reis, D.W. Hutmacher, Mater. Sci. Eng. C 20, 27 (2002)

    Article  Google Scholar 

  • M.A.S.A. Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005a)

    Article  CAS  Google Scholar 

  • M.A.S.A. Samir, L. Chazeau, F. Alloin, J.-Y. Cavaillé, A. Dufresne, J.-Y. Sanchez, POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim. Acta 50(19), 3897–3903 (2005b)

    Article  Google Scholar 

  • M. Saththianathan, K. Johani, A. Taylor, H. Hu, K. Vickery, P. Callan, A.K. Deva, The role of bacterial biofilm in adverse soft-tissue filler reactions: a combined laboratory and clinical study. Plast. Reconstr. Surg. 139, 613–621 (2017)

    Article  CAS  Google Scholar 

  • P.M. Satturwar, S.V. Fulzele, A.K. Dorle, Biodegradation and in vivobiocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech. 4(4), 434–439 (2003). https://doi.org/10.1208/pt04045565

    Article  Google Scholar 

  • D.P. Seema, G. Arun, Applications of natural polymer gum arabic: a review. International Journal of Food Properties. 18(5), 986–998 (2015)

    Google Scholar 

  • H. Sehaqui et al., Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose – polyethylenimine foams. Environ. Sci. Technol. 49(5), 3167–3174 (2015)

    Article  CAS  Google Scholar 

  • E. Serpil, (Ed.). Advanced sorption process applications. IntechOpen. (2019)

    Google Scholar 

  • M. Shahbazi, H. Jäger, Current status in the utilization of biobased polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Appl. Bio Mater. (2020). https://doi.org/10.1021/acsabm.0c01379

  • Shankar S & Rhim J. Bionanocomposite Films for Food Packaging Applications. (Reference module in food science, 2018)

    Google Scholar 

  • K. I. Shingel, R. H. Marchessault, Polysaccharides for Drug Delivery and Pharmaceutical Applications, ed. by R.H. Marchessault, F. Ravenelle, X.X. Zhu ACS Symposium Series 934, (American Chemical Society, 2006), p. 271

    Google Scholar 

  • Y. Shoenfeld, N. Agmon-Levin, ‘ASIA’ – Autoimmune/inflammatory syndrome induced by adjuvants. J. Autoimmun. 36, 4–8 (2011)

    Article  CAS  Google Scholar 

  • A. Shrivastava, Introduction to plastics engineering, in Introduction to Plastics Engineering (2018), pp. 1–16. https://doi.org/10.1016/b978-0-323-39500-7.00001-0

  • M. Singhvi, S. Zinjarde, D. Gokhale, Polylactic acid: synthesis and biomedical applications. J. Appl. Microbiol. 127, 1612–1626 (2019). https://doi.org/10.1111/jam.14290

    Article  CAS  Google Scholar 

  • G. Siqueira, J. Bras, A. Dufresne, Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2), 425–432 (2009)

    Article  CAS  Google Scholar 

  • L.E. St. Pierre. Textbook of Polymer Science, 2nd edn., vol. 598, ed. by F.W. Billmeyer Jr. (Wiley–Interscience, New York, 1972), pp. $16.25. J. Polym. Sci. B Polym. Lett. 10, 573–574 (1971). https://doi.org/10.1002/pol.1972.110100721

  • M. Sudhakar, M. Doble, P.S. Murthy, R. Venkatesan, Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int. Biodeterior. Biodegradation 61, 203–213 (2008)

    Article  CAS  Google Scholar 

  • J. Swabrick, H.C. Boyan, Gels and jellies, in Encyclopedia of Pharmaceutical Technology, vol. 6, (Marcel Dekker, New York, 1991), p. 415

    Google Scholar 

  • A. Taghizadehghalehjoughi, A. Hacimuftuoglu, M. Cetin, A.B. Ugur, B. Galateanu, Y. Mezhuev, U. Okkay, N. Taspinar, M. Taspinar, A. Uyanik, B. Gundogdu, M. Mohammadzadeh, K.A. Nalci, P. Stivaktakis, A. Tsatsakis, T.W. Jung, J.H. Jeong, A.A. El-Aty, Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies. Nanomedicine 13, 1595–1606 (2018)

    Article  Google Scholar 

  • E. Tatrai, Role of cellulose in wood dust-induced fibrosing alveo-bronchiolitis in rat. J. Appl. Toxicol. 15(1), 45–48 (1995)

    Article  CAS  Google Scholar 

  • P.B. Tchounwou et al., Heavy metals toxicity and the environment. EXS 101, 133–164 (2012)

    Google Scholar 

  • C.Y. Teh et al., Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 55(16), 4363–4389 (2016)

    Article  CAS  Google Scholar 

  • D.J. Tenenbaum, Food vs. fuel: diversion of crops could cause more hunger. Environ. Health. Perspect. 116(6), A254–A257 (2008). https://doi.org/10.1289/ehp.116-a254. PMID: 18560500; PMCID: PMC2430252

    Article  Google Scholar 

  • S. Terasaka, Y. Iwasaki, N. Shinya, T. Uchida, Neurosurgery 58, 134 (2006)

    Google Scholar 

  • P. Terech, L. Chazeau, J.Y. Cavaille, A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32(6), 1872–1875 (1999)

    Article  CAS  Google Scholar 

  • B.M. Tesar, D. Jiang, J. Liang, S.M. Palmer, P.W. Noble, D.R. Goldstein, The role of hyaluronan degradation products as innate alloimmune agonists. Am. J. Transplant. 6, 2622–2635 (2006)

    Article  CAS  Google Scholar 

  • E.L. Teuten, S.J. Rowland, T.S. Galloway, R.C. Thompson, Potential for plastics to transport hydrophobic contaminants. Environ. Sci. Technol. 41, 7759–7764 (2007)

    Article  CAS  Google Scholar 

  • N.G. Thomas, J. Indian. Soc. Periodontol. 15, 260 (2011)

    Article  Google Scholar 

  • C.-H. Tsai, P.-Y. Wang, I.C. Lin, H. Huang, G.-S. Liu, C.-L. Tseng, Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int. J. Mol. Sci. 19, 2830 (2018). https://doi.org/10.3390/ijms19092830

    Article  CAS  Google Scholar 

  • L. Tu et al., Calotropis gigantea fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Sep. Purif. Technol. 192, 30–35 (2018)

    Article  CAS  Google Scholar 

  • F. Velard, S. Schlaubitz, J.C. Fricain, C. Guillaume, D. Laurent-Maquin, J. Möller-Siegert, L. Vidal, E. Jallot, S. Sayen, O. Raissle, J.M. Nedelec, C. Vix-Guterl, K. Anselme, J. Amédée, P. Laquerrière, In vitro and in vivo evaluation of the inflammatory potential of various nanoporous hydroxyapatite biomaterials. Nanomedicine 10, 785–802 (2015)

    Article  CAS  Google Scholar 

  • O. Vera-Lastra, G. Medina, P. Cruz-Dominguez Mdel, et al., Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome): clinical and immunological spectrum. Expert. Rev. Clin. Immunol. 9, 361–373 (2013)

    Article  CAS  Google Scholar 

  • G.T. Voss, M.S. Gularte, R.L. de Oliveira, C. Luchese, A.R. Fajardo, E.A. Wilhelm, Biopolymeric films as delivery vehicles for controlled release of hydrocortisone: promising devices to treat chronic skin diseases. Mater. Sci. Eng. C 114 (2020)

    Google Scholar 

  • Y.C.J. Wang, B. Yang, R.N. Jennings, A.A. Protter, Controlled release delivery of peptide or protein. US Patent no. 6, 187, 330, 2001

    Google Scholar 

  • Q. Wang et al., CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4(1), 42–55 (2011)

    Article  CAS  Google Scholar 

  • C. Wang, J. Yu, Y. Lu, D. Hua, X. Wang, X. Zou, Biodegradable microplastics (BMPs): a new cause for concern? Environ. Sci. Pollut. Res. 28(47), 66511–66518 (2021). https://doi.org/10.1007/s11356-021-16435-4

    Article  CAS  Google Scholar 

  • D.B. Warheit et al., Two-week inhalation study in rats with cellulose fibers, in Advances in the Prevention of Occupational Respiratory Diseases, International Congress Series 1153, ed. by K. Chiyotani, Y. Hosoda, (Excerpta Medica, Amsterdam, 1998), pp. 579–582

    Google Scholar 

  • A. Watad, P. David, S. Brown, et al., Autoimmune/inflammatory syndrome induced by adjuvants and thyroid autoimmunity. Front. Endocrinol. (Lausanne) 7, 150 (2016)

    Google Scholar 

  • C.J. Weber, V. Haugaard, R. Festersen, G. Bertelsen, Production and applications of biobased packaging materials for the food industry. Food Addit. Contam. 19, 172–177 (2002)

    Article  CAS  Google Scholar 

  • M. Weiss, J. Haufe, M. Carus, M. Brandao, S. Bringezu, B. Hermann, M.K. Patel, A review of the environmental impacts of biobased materials. J. Ind. Ecol. 16 (2012)

    Google Scholar 

  • J. Wróblewska-Krepsztul, T. Rydzkowski, I. Michalska-Pożoga, V.K. Thakur, Biopolymers for biomedical and pharmaceutical applications: recent advances and overview of alginate electrospinning. Nanomaterials 9, 404 (2019). https://doi.org/10.3390/nano9030404

    Article  CAS  Google Scholar 

  • Z. Xu et al., Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose 25(2), 1217–1227 (2018)

    Article  CAS  Google Scholar 

  • M.T. Yagub et al., Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interf. Sci. 209, 172–184 (2014)

    Article  CAS  Google Scholar 

  • E.B. Yahya, A.A. Amirul, H.P.S.A. Khalil, N.G. Olaiya, M.O. Iqbal, F. Jummaat, A.K. Atty Sofea, A.S. Adnan, Insights into the role of biopolymer aerogel scaffolds in tissue engineering and regenerative medicine. Polymers 13, 1612 (2021). https://doi.org/10.3390/polym13101612

    Article  CAS  Google Scholar 

  • N. Yanamala, M.T. Farcas, M.K. Hatfield, E.R. Kisin, V.E. Kagan, C.L. Geraci, A.A. Shvedova, In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Eng. 2(7), 1691–1698 (2014)

    Article  CAS  Google Scholar 

  • K. Zhang et al., Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts. Ultrason. Sonochem. 18(3), 765–772 (2011)

    Article  CAS  Google Scholar 

  • L. Zhang, Y. Zeng, Z. Cheng, Removal of heavy metal ions using chitosan and modified chitosan: a review. J. Mol. Liq. 214, 175–191 (2016)

    Article  CAS  Google Scholar 

  • Y. Zhou et al., Removal of methylene blue dyes from wastewater using cellulose-based superadsorbent hydrogels. Polym. Eng. Sci. 51(12), 2417–2424 (2011)

    Article  CAS  Google Scholar 

  • M.X. Zhu et al., Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J. Hazard. Mater. 149(3), 735–741 (2007)

    Article  CAS  Google Scholar 

  • L. Zhuang et al., A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation. Chem. Eng. J. 163(1), 160–163 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lekshmi K. Edison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

V. M, R., Edison, L.K. (2022). Safety Issues, Environmental Impacts, and Health Effects of Biopolymers. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-16-6603-2_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6603-2_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6603-2

  • Online ISBN: 978-981-16-6603-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics