Skip to main content

Advancements in the Field of Oral, Intravenous, and Inhaled Immunomodulators Using Nanotechnology

  • Chapter
  • First Online:
Immunomodulators and Human Health

Abstract

Despite a great progress in the field of conventional delivery of immunomodulators, development of newer techniques and drugs is greatly required due to intrinsic instability of immunomodulators in vivo, related toxicity, and the required multiple administrations. Nanotechnology has emerged as an effective platform for overcoming these problems associated with conventional delivery of immunomodulators. Oral, intravenous, or inhalation route is used for the administration of immunomodulators during lung diseases or cancer for the release of different types of peptides, nucleic acids, as well as drugs to the site of action, and this efficacy is further enhanced by implementation of nanotechnology. Nanosized drug delivery systems create an occasion to enhance the cellular and humoral immune responses. Nanoscale size particles also facilitate uptake by the mucosa as well as gut-associated lymphoid tissue and the phagocytic cells that efficiently recognized and present an antigen. A number of studies on various types of lung diseases have shown advantages of inhaled and intravenous nanomedicines by direct local deliverance of immunomodulators specifically to the diseased cell. Other advantages of using nanoparticles include greater surface-volume ratio and variable surfaces for specific delivering of the immunomodulators to specific cells. The focus of this chapter is on summarizing the recent condition and developing way in such nanotechnology-based oral, intravenous, and inhaled immunotherapy as well as the function of nanosize particles as a carrier of immunomodulators, and depots for sustained immunostimulation along with associated advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida AJ, Alpar HO, Brown MRW (1993) Immune response to nasal delivery of antigenically intact tetanus toxoid associated with poly (L-lactic acid) microspheres in rats, rabbits and Guinea-pigs. J Pharm Pharmacol 45:198–203

    Article  CAS  PubMed  Google Scholar 

  • Amorij JP, Westra TA, Hinrichs WL, Huckriede A, Frijlink HW (2007) Towards an oral influenza vaccine: comparison between intragastric and intracolonic delivery of influenza subunit vaccine in a murine model. Vaccine 26:67–76

    Article  CAS  PubMed  Google Scholar 

  • Anderson PM, Katsanis E, Sencer SF, Hasz D, Ochoa AC, Bostrom B (1991) Depot characteristics and biodistribution of interleukin-2 liposomes: importance of route of administration. J Immunother 12:19–31

    Google Scholar 

  • Anonymous (n.d.-a). http://novavax.com/page/10/matrix-m-adjuvant-technology. Accessed 4 Aug 2020

  • Anonymous (n.d.-b). http://novavax.com/page/8/vaccine-technology. Accessed 4 Aug 2020

  • Anonymous (n.d.-c). http://www.immunedesign.com/platforms/. Accessed 4 Aug 2020

  • Anonymous (n.d.-d). http://www.juvaris.com/technology/overview.html. Accessed 4 Aug 2020

  • Anonymous (n.d.-e). http://www.mucosis.com/flugem.php. Accessed 4 Aug 2020

  • Anonymous (n.d.-f). http://www.mucosis.com/mimopath.php. Accessed 4 Aug 2020

  • Anonymous (n.d.-g). http://www.mucosis.com/press_releases_07-11-16.php. Accessed 4 Aug 2020

  • Anonymous (n.d.-h). http://www.vical.com/technology/dna-technology/poloxamer/default.aspx. Accessed 2 Aug 2020

  • Anonymous (n.d.-i). http://www.vical.com/technology/vaxfectin/default.aspx. Accessed 4 Aug 2020

  • Anonymous (n.d.-k). https://clinicaltrials.gov/ct2/show/NCT02335164. Accessed 3 Aug 2020

  • Anonymous (n.d.-l). https://clinicaltrials.gov/ct2/show/NCT02387125?term=NCT02387125&rank=1. Accessed 4 Aug 2020

  • Anonymous (n.d.-m). https://clinicaltrials.gov/ct2/show/NCT02787109?term=NCT02787109&rank=1. Accessed 4 Aug 2020

  • Anonymous (n.d.-n). https://clinicaltrials.gov/ct2/show/NCT03026348. Accessed 4 Aug 2020

  • Avtushenko SS, Sorokin EM, Zoschenkova NY, Zacharova NG, Naichin AN (1996) Clinical and immunological characteristics of the emulsion form of inactivated influenza vaccine delivered by oral immunization. J Biotechnol 44:21–38

    Article  CAS  PubMed  Google Scholar 

  • Birrenbach G, Speiser PP (1976) Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 65:1763–1766

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg P (2007) Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25:5467–5484

    Article  CAS  PubMed  Google Scholar 

  • Capini C, Jaturanpinyo M, Chang HI et al (2009) Antigen-specific suppression of inflammatory arthritis using liposomes. J Immunol 182:3556–3565

    Article  CAS  PubMed  Google Scholar 

  • Cappellano G, Woldetsadik AD, Orilieri E et al (2014) Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine 32:5681–5689

    Article  CAS  PubMed  Google Scholar 

  • Chiang CS, Lin YJ, Lee R et al (2018) Combination of fucoidan based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol 13:746–760

    Article  CAS  PubMed  Google Scholar 

  • Christian DA, Hunter CA (2012) Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 4:425–441

    Article  CAS  PubMed  Google Scholar 

  • Conde J, Bao CC, Tan YQ et al (2015) Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Adv Funct Mater 25:4183–4194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia-Pinto JF, Peleteiro M, Csaba N, González-Fernández Á, Alonso MJ (2015) Multi-enveloping of particulated antigens with biopolymers and immunostimulant polynucleotides. J Drug Deliv Sci Technol 30:424–434

    Article  CAS  Google Scholar 

  • Cubillos-Ruiz JR, Engle X et al (2009) Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 119:2231–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ (2017) Modulating the immune system through nanotechnology. Semin Immunol 34:78–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delany I, Rappuoli R, De Gregorio E (2014) Vaccines for the 21st century. EMBO Mol Med 6:708–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadel TR, Sharp FA, Vudattu N et al (2014) A carbon nanotube-polymer composite for T-cell therapy. Nat Nanotechnol l9:639–650

    Article  CAS  Google Scholar 

  • Fan Y, Kuai R, Xu Y, Ochyl LJ, Irvine DJ, Moon JJ (2017) Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett 17:7387–7398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Xu W, Li Z, Song W, Ding J, Chen X (2019) Immunomodulatory nanosystems. Adv Sci 6(1900101):1–39

    Google Scholar 

  • Gao W, Fang RH, Thamphiwatana S et al (2015) Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 15:1403–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F (2017) Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano 11:54–68

    Article  CAS  PubMed  Google Scholar 

  • Gerke C, Colucci AM, Giannelli C, Sanzone S, Vitali CG, Sollai L (2015) Production of a Shigella sonnei vaccine based on generalized modules for membrane antigens (GMMA), 1790GAHB. PLoS One 10:1–22

    Article  CAS  Google Scholar 

  • Getts DR, Shea LD, Miller SD, King NJC (2015) Harnessing nanoparticles for immune modulation. Trends Immunol 36:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutjahr A, Tiraby G, Perouzel E, Verrier B, Paul S (2016) Triggering intracellular receptors for vaccine adjuvantation. Trends Immunol 37:573–587

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Aoshi T, Haseda Y, Kobiyama K, Wijaya E, Nakatsu N (2017) Advax, a delta inulin microparticle, potentiates in-built adjuvant property of co-administered vaccines. Bio Medicine 15:127–136

    Google Scholar 

  • Hess KL, Andorko JI, Tostanoski LH, Jewell CM (2016) Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity. Biomaterials 118:51–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hobson P, Barnfield C, Barnes A, Klavinskis LS (2003) Mucosal immunization with DNA vaccines. Methods 31:217–224

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Zhang Z, Jiang Y, Zhang D, Chen J, Dong L, Zhang J (2012) Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release 158:286–292

    Article  CAS  PubMed  Google Scholar 

  • Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, Miller SD (2014) A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano 8:2148–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine DJ, Hanson MC, Rakhra K, Tokatlian T (2015) Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115:11,109–11,146

    Article  CAS  Google Scholar 

  • Kasturi SP, Kozlowski PA, Nakaya HI, Burger MC, Russo P, Pham M et al (2017) Adjuvating a simian immunodeficiency virus vaccine with toll-like receptor ligands encapsulated in nanoparticles induces persistent antibody responses and enhanced protection in TRIM5α restrictive macaques. J Virol 91:e01844–e01816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedar E, Gur H, Babai I, Samira S, Even-Chen S, Barenholz Y (2000) Delivery of cytokines by liposomes: hematopoietic and immunomodulatory activity of interleukin-2 encapsulated in conventional liposomes and in long-circulating liposomes. J Immunother 23:131–145

    Article  CAS  PubMed  Google Scholar 

  • Kim WU, Lee WK et al (2002) Suppression of collagen-induced arthritis by single administration of poly (lactic-co-glycolic acid) nanoparticles entrapping type II collagen: a novel treatment strategy for induction of oral tolerance. Arthritis Rheum 46:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Kourtis IC, Hirosue S, de Titta A, Kontos S, Stegmann T, Hubbell JA, Swartz MA (2013) Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS One 8:1–11

    Article  CAS  Google Scholar 

  • Kroll AV, Fang RH, Jiang Y et al (2017) Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv Mater 29:1703969

    Article  CAS  Google Scholar 

  • Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ (2017) Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 16:489–501

    Article  CAS  PubMed  Google Scholar 

  • Kuai R, Yuan W, Son S, Nam J, Xu Y, Fan Y, Schwendeman A, Moon JJ (2018) Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci Adv 4:1736–1745

    Article  CAS  Google Scholar 

  • Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S (2015) Shape and size-dependent immune response to antigen-carrying nanoparticles. J Contr Rel 220(Pt A):141–148

    Article  CAS  Google Scholar 

  • Kwong B, Liu H, Irvine DJ (2011) Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials 32:5134–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong B, Gai SA, Elkhader J, Wittrup KD, Irvine DJ (2013) Localized immunotherapy via liposome-anchored anti-CD137 þ IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res 73:1547–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert LH, Goebrecht GKE, De Leo SE, O’Connor RS, Nunez-Cruz S, Li TD et al (2017) Improving T cell expansion with a soft touch. Nano Lett 17:821–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JS, Dolgova NV, Zhang Y, Xia CQ, Wasserfall CH, Atkinson MA et al (2015) A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice. Clin Immunol 160:90–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li AW, Sobral MC et al (2018) A facile approach to enhance antigen response for personalized cancer vaccination. Nat Mater 17:528–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AY, Almeida JP, Bear A et al (2013) Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS One 8:e63550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Li L, Fu C, Liu H, Chen D, Tang F (2012) Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials 33:2399–2407

    Article  CAS  PubMed  Google Scholar 

  • Lizotte PH, Wen AM, Sheen MR et al (2016) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11:295–303

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Wang H, Wang Z et al (2017) A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 12:648–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    Article  CAS  PubMed  Google Scholar 

  • Maldonado RA, LaMothe RA, Ferrari JD et al (2015) Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A 112:E156–E165

    Article  CAS  PubMed  Google Scholar 

  • Manu KA, Kuttan G (2009) Immunomodulatory activities of Punarnavine, an alkaloid from Boerhaavia diffusa. Immunopharmacol Immunotoxicol 2:377–387

    Article  CAS  Google Scholar 

  • McCarthy DP, Yap JWT, Harp CT et al (2017) An antigen-encapsulating nanoparticle platform for Th1/17 immune tolerance therapy. Nanomed Nanotechnol Biol Med 13:191–200

    Article  CAS  Google Scholar 

  • Min Y, Roche KC, Tian S et al (2017) Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 12:877–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon C, Park HJ, Choi YH, Park EM, Castranova V, Kang JL (2010) Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide. J Toxicol Environ Health A 73:396–409

    Article  CAS  PubMed  Google Scholar 

  • Neville ME, Robb RJ, Popescu MC (2001) In situ vaccination against a nonimmunogenic tumour using intratumoural injections of liposomal interleukin 2. Cytokine 16:239–250

    Article  CAS  PubMed  Google Scholar 

  • Park J, Wrzesinski SH, Stern E et al (2012) Combination delivery of TGF beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater 11:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    Article  CAS  PubMed  Google Scholar 

  • Prego C, Paolicelli P, Díaz B et al (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28:2607–2614

    Article  CAS  PubMed  Google Scholar 

  • Preis I, Langer RS (1979) A single-step immunization by sustained antigen release. J Immunol Methods 28:193–197

    Article  CAS  PubMed  Google Scholar 

  • Pujol-Autonell I, Serracant-Prat A, Cano-Sarabia M et al (2015) Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes. PLoS One 10:1–20

    Article  CAS  Google Scholar 

  • Pujol-Autonell I, Mansilla MJ, Rodriguez-Fernandez S et al (2017) Liposome-based immunotherapy against autoimmune diseases: therapeutic effect on multiple sclerosis. Nanomedicine (Lond) 12:1231–1242

    Article  CAS  Google Scholar 

  • Rao DA, Forrest ML, Alani AW, Kwon GS, Robinson JR (2010) Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J Pharm Sci 99(4):2018–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    Article  CAS  PubMed  Google Scholar 

  • Roshan N, Savitri P (2013) Review on chemical constituents and parts of plants as immunomodulators. Res J Pharm Bio Chem Sci 4:76–89

    Google Scholar 

  • Serra P, Santamaria P (2015) Nanoparticle-based autoimmune disease therapy. Clin Immunol 160:3–13

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Steinmetz NF (2016) Emerging nanotechnologies for cancer immunotherapy. Exp Biol Med 241:1116–1126

    Article  CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:698–708

    Article  CAS  Google Scholar 

  • Smith DM, Simon JK, Baker JR (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BR, Ghosn EE, Rallapalli H et al (2014) Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat Nanotechnol 9:481–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith TT, Stephan SB, Moffett HF et al (2017) In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 12:813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tostanoski LH, Chiu YC, Gammon JM, Simon T, Andorko JI, Bromberg JS (2016) Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. Cell Rep 16:2940–2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veen AH, Eggermont AM, Seynhaeve AL, van Tiel, ten Hagen TL (1998) Biodistribution and tumor localization of stealth liposomal tumor necrosis factor-alpha in soft tissue sarcoma bearing rats. Int J Cancer 77:901–916

    Article  PubMed  Google Scholar 

  • Vicente S, Díaz-Freitas B, Peleteiro M, Sánchez A, Pascual DW, González-Fernández Á, Alonso MJ (2013) A polymer/oil based nanovaccine as a single-dose immunization approach. PLoS One 8:2–9

    Google Scholar 

  • Vicente S, Goins BA, Sanchez A, Alonso MJ, Phillips WT (2014) Biodistribution and lymph node retention of polysaccharide-based immunostimulating nanocapsules. Vaccine 32:1685–1692

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Dai W, Wang Z, Chen B, Li Z, Fan X (2011) Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin Vaccine Immunol 18:75–81

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wang Y, Zhang L, Huang L (2014) Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8:3636–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yata T, Takahashi Y, Tan M et al (2017) DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials 146:136–148

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Zhao L, Fu F et al (2014) A novel nanoparticle containing MOG peptide with BTLA induces T cell tolerance and prevents multiple sclerosis. Mol Immunol 57:93–99

    Article  CAS  PubMed  Google Scholar 

  • Zanganeh S, Hutter G, Spitler R et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11:986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SX (2015) Turning killer into cure–the story of oncolytic herpes simplex viruses. Discov Med 20:303–319

    PubMed  Google Scholar 

  • Zhang L, Londono P, Grimes S, Blackburn P, Gottlieb P, Eisenbarth GS (2014) MAS-1 adjuvant immunotherapy generates robust Th2 type and regulatory immune responses providing long-term protection from diabetes in late-stage pre-diabetic NOD mice. Autoimmunity 47:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP (2014) Nanoparticle vaccines. Vaccine 32:327–337

    Article  PubMed  Google Scholar 

  • Zhu S, Niu M, O’Mary H, Cui Z (2013) Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm 10:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Lynn GM, Jacobson O et al (2017a) Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun 8:1954–1965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu G, Mei L, Vishwasrao HD, Jacobson O et al (2017b) Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat Commun 8:1482–1500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, R., Purohit, D., Jalwal, P., Kaushik, D., Pandey, P. (2022). Advancements in the Field of Oral, Intravenous, and Inhaled Immunomodulators Using Nanotechnology. In: Kesharwani, R.K., Keservani, R.K., Sharma, A.K. (eds) Immunomodulators and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-16-6379-6_6

Download citation

Publish with us

Policies and ethics