Skip to main content

Review of Unsupervised Learning Techniques

  • Conference paper
  • First Online:
Proceedings of 2021 Chinese Intelligent Systems Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 804))

Abstract

Unsupervised learning methods, as one of the important machine learning methods, have been developing rapidly, receiving more and more attention since they can automatically classify the data according to their attributes. However, most current studies of the unsupervised learning are focused on specific techniques and application scenarios, while few summarize its development and typical algorithms systematically. This paper is devoted to a comprehensive summarization of the unsupervised learning methods. According to different data processing methods, unsupervised learning can be divided into dimensionality reduction, clustering and deep learning-based methods. The methods of dimensionality reduction focus on reducing the complexity and removing redundant features of the data, while keeping the original data structure as much as possible. Clustering methods can automatically classify data according to the data features, which is useful for data analysis. As for deep learning-based methods, deep neural network is used to train the data to achieve higher data processing performance. For each category of the unsupervised learning methods, the typical algorithms and their applications are explained and the recent researches are summarized. Finally, the future development of the unsupervised learning is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpaydin, E.: Introduction to Machine Learning. MIT press, Cambridge (2020)

    MATH  Google Scholar 

  2. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, New York, pp. 161–168 (2006). https://doi.org/10.1145/1143844.1143865

  3. Ghahramani, Z.: Unsupervised learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 72–112. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_5

    Chapter  MATH  Google Scholar 

  4. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: Mixmatch: a holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249 (2019)

  5. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996). https://doi.org/10.1613/jair.301

    Article  Google Scholar 

  6. Singh, S., Prasad, S.V.A.V.: Techniques and challenges of face recognition: a critical review. Procedia Comput. Sci. 143, 536–543 (2018). https://doi.org/10.1016/j.procs.2018.10.427

    Article  Google Scholar 

  7. Keysers, D., Deselaers, T., Rowley, H.A., Wang, L.L., Carbune, V.: Multi-language online handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1180–1194 (2016). https://doi.org/10.1109/TPAMI.2016.2572693

    Article  Google Scholar 

  8. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7370–7377 (2019). https://doi.org/10.1609/aaai.v33i01.33017370

  9. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks, pp. 2921–2926 (2017). https://doi.org/10.1109/IJCNN.2017.7966217

  10. Khan, S., Liew, C.F., Yairi, T., McWilliam, R.: Unsupervised anomaly detection in unmanned aerial vehicles. Appl. Soft Comput. 83, 105650 (2019). https://doi.org/10.1016/j.asoc.2019.105650

    Article  Google Scholar 

  11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge (2018)

    MATH  Google Scholar 

  12. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010). https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  13. Child, D.: The Essentials of Factor Analysis. Cassell Educational, London (1990)

    Google Scholar 

  14. Abdi, H.: Singular value decomposition (SVD) and generalized singular value decomposition. Ency. Meas. Stat., 907–912 (2007)

    Google Scholar 

  15. Common, P.: Independent component analysis, a new concept. Signal Process 36(3), 287–314 (1994). https://doi.org/10.1016/0165-1684(94)90029-9

    Article  Google Scholar 

  16. Machado, J.T., Lopes, A.M.: Multidimensional scaling and visualization of patterns in prime numbers. Commun. Nonlinear Sci. Numer. Simul. 83, 10512 (2020). https://doi.org/10.1016/j.cnsns.2019.105128

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, J.M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.B.: Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 59(1), 223–234 (2004). https://doi.org/10.1016/j.ces.2003.09.012

    Article  Google Scholar 

  18. Huang, X., Wu, L., Ye, Y.: A review on dimensionality reduction techniques. Int. J. Pattern Recogn. Artif. Intell. 33(10), 1950017 (2019). https://doi.org/10.1142/S0218001419500174

    Article  Google Scholar 

  19. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000). https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  20. Liu, Q., Cai, Y., Jiang, H., Lu, J., Chen, L.: Traffic state prediction using ISOMAP manifold learning. Physica A Stat. Mech. Appl. 506, 532–541 (2018). https://doi.org/10.1016/j.physa.2018.04.031

    Article  Google Scholar 

  21. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000). https://doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  22. Saul, L. K., Roweis, S. T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. Departmental Papers, 12 (2003)

    Google Scholar 

  23. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. 100(10), 5591–5596 (2003). https://doi.org/10.1073/pnas.1031596100

    Article  MathSciNet  MATH  Google Scholar 

  24. Hajizadeh, R., Aghagolzadeh, A., Ezoji, M.: Manifold based Persian digit recognition using the modified locally linear embedding and linear discriminative analysis. In: 2015 2nd International Conference on Knowledge-Based Engineering and Innovation, pp. 614–618 (2015). https://doi.org/10.1109/KBEI.2015.7436115

  25. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26(1), 313–338 (2004)

    Article  MathSciNet  Google Scholar 

  26. Hinton, G., Roweis, S.T.: Stochastic neighbor embedding. In: NIPS, vol. 15, pp. 833–840 (2002). https://doi.org/10.1137/S1064827502419154

  27. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  28. Belkina, A.C., Ciccolella, C.O., Anno, R., Halpert, R., Spidlen, J., Snyder-Cappione, J.E.: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat. Commun. 10(1), 1–12 (2019). https://doi.org/10.1038/s41467-019-13055-y

    Article  Google Scholar 

  29. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  30. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowl. Disc. 2(3), 283–304 (1998). https://doi.org/10.1023/A:1009769707641

    Article  Google Scholar 

  31. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Stanford (2006)

    Google Scholar 

  32. OOlukanmi, P. O., Twala, B.: K-means-sharp: modified centroid update for outlier-robust k-means clustering. In: 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics, PRASA-RobMech, pp. 14–19 (2017). https://doi.org/10.1109/RoboMech.2017.8261116

  33. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  34. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points to identify the clustering structure. ACM Sigmod Rec. 28(2), 49–60 (1999). https://doi.org/10.1145/304181.304187

    Article  Google Scholar 

  35. Smiti, A., Elouedi, Z.: Dbscan-gm: an improved clustering method based on gaussian means and dbscan techniques. In: 2012 IEEE 16th International Conference on Intelligent Engineering Systems, pp. 573–578 (2012). https://doi.org/10.1109/INES.2012.6249802

  36. Yang, K., Gao, Y., Ma, R., Chen, L., Wu, S., Chen, G.: Dbscan-ms: distributed density-based clustering in metric spaces. In 2019 IEEE 35th International Conference on Data Engineering, pp. 1346–1357 (2019). https://doi.org/10.1109/ICDE.2019.00122

  37. Wang, W., Yang, J., Muntz, R.: STING: a statistical information grid approach to spatial data mining. In: VLDB, vol. 97, pp. 186–195 (1997)

    Google Scholar 

  38. Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: a multi-resolution clustering approach for very large spatial databases. In: VLDB, vol. 98, pp. 428–439 (1998)

    Google Scholar 

  39. Yu, D., Chatterjee, S., Zhang, A.: Efficiently detecting arbitrary shaped clusters in image databases. In: Proceedings 11th International Conference on Tools with Artificial Intelligence, pp. 187–194 (1999). https://doi.org/10.1109/TAI.1999.809785

  40. Yue, S., Huang, X.: A gird-based fuzzy cluster approach. In: 2013 International Conference on Machine Learning and Cybernetics, vol. 1, pp. 148–154 (2013). https://doi.org/10.1109/ICMLC.2013.6890460

  41. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. ACM Sigmod Rec. 27(2), 73–84 (1998). https://doi.org/10.1145/276305.276312

    Article  MATH  Google Scholar 

  42. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. ACM Sigmod Rec. 25(2), 103–114 (1996). https://doi.org/10.1145/235968.233324

    Article  Google Scholar 

  43. He, X., Cai, D., Shao, Y., Bao, H., Han, J.: Laplacian regularized gaussian mixture model for data clustering. IEEE Trans. Knowl. Data Eng. 23(9), 1406–1418 (2010). https://doi.org/10.1109/TKDE.2010.259

    Article  Google Scholar 

  44. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  45. Rhouma, M.B.H., Frigui, H.: Self-organization of pulse-coupled oscillators with application to clustering. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 180–195 (2001). https://doi.org/10.1109/34.908968

    Article  Google Scholar 

  46. Sun, A. X.: Improved SOM algorithm-HDSOM applied in text clustering. In: 2010 International Conference on Multimedia Information Networking and Security, pp. 306–309 (2010). https://doi.org/10.1109/MINES.2010.74

  47. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76(12), 579–581 (1989)

    Article  Google Scholar 

  48. Devarajan, M., Fatima, N.S., Vairavasundaram, S., Ravi, L.: Swarm intelligence clustering ensemble based point of interest recommendation for social cyber-physical systems. J. Intell. Fuzzy Syst. 36(5), 4349–4360 (2019). https://doi.org/10.3233/JIFS-169991

    Article  Google Scholar 

  49. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 94–105 (1998). https://doi.org/10.1145/276304.276314

  50. Chan, E.Y., Ching, W.K., Ng, M.K., Huang, J.Z.: An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recogn. 37(5), 943–952 (2004). https://doi.org/10.1016/j.patcog.2003.11.003

    Article  MATH  Google Scholar 

  51. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  52. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  53. Ng, A.: Sparse autoencoder. CS294A Lect. Notes 72, 1–19 (2011)

    Google Scholar 

  54. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008). https://doi.org/10.1145/1390156.1390294

  55. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc. (2009)

    Google Scholar 

  56. Kingma, D. P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  57. Devlin, J., Chang, M. W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805(2018)

  58. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q. V.: Xlnet: generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237 (2019)

  59. Hinton, G. E., Sejnowski, T. J.: Optimal perceptual inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 448 (1983)

    Google Scholar 

  60. Salakhutdinov, R., Hinton, G.: Deep boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448–455 (2009)

    Google Scholar 

  61. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput 18(7), 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  62. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  63. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019)

    Google Scholar 

  64. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  65. Usama, M., et al.: Unsupervised machine learning for networking: techniques, applications and research challenges. IEEE Access 7, 65579–65615 (2019). https://doi.org/10.1109/ACCESS.2019.2916648

    Article  Google Scholar 

  66. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2051–2060 (2017)

    Google Scholar 

  67. Yao, Y., Liu, C., Luo, D., Zhou, Y., Ye, Q.: Video playback rate perception for self-supervised spatio-temporal representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6548–6557 (2020)

    Google Scholar 

  68. He, K., Fan, H., Wu, Y., Xie, S, Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  69. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported under the National Natural Science Foundation of China Project Grant Ref. U1913201 and 61973296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, X., Liu, X., Zhou, Y. (2022). Review of Unsupervised Learning Techniques. In: Jia, Y., Zhang, W., Fu, Y., Yu, Z., Zheng, S. (eds) Proceedings of 2021 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering, vol 804. Springer, Singapore. https://doi.org/10.1007/978-981-16-6324-6_59

Download citation

Publish with us

Policies and ethics