Skip to main content

Tsunami Waves, Causes and Its Implications: A Review

  • Conference paper
  • First Online:
Geotechnical Engineering and Sustainable Construction

Abstract

This paper reviews the basic theoretical information needed to understand the tsunami wave’s phenomenon, causes, and implications on coastal cities. The first part describes the basic knowledge of the tsunami waves and some experimental and large and small physical modeling performed to understand the Tsunami and take care of its effect in the future. The influence of climate changes and global warming on the rise of water level and its effect on the Arab Gulf and Iraq are also presented. Then the principles of tsunami generation, involving earthquakes, landslides, and volcanic will be discussed. The tsunami propagation, inundation, and interaction with the coastal structures will be reviewed in brief. Also, the paper reviews some previous studies on tsunami simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorensen, R. M. (2005). Basic coastal engineering (vol. 10). Springer Science & Business Media.

    Google Scholar 

  2. González, F. I., Bernard, E. N., Meinig, C., Eble, M. C., Mofjeld, H. O., & Stalin, S. (2005). The NTHMP tsunameter network. Natural Hazards, 35(1), 25–39.

    Article  Google Scholar 

  3. Waves on the horizon. (2013). Nature Clim Change, 3, 179. https://doi.org/10.1038/nclimate1815

    Article  Google Scholar 

  4. Yavuz, C., Kentel, E., & Aral, M. M. (2020). Climate change risk evaluation of Tsunami hazards in the Eastern Mediterranean sea. Water, 12(10), 2881.

    Article  Google Scholar 

  5. Rossetto, T., Allsop, W., Charvet, I., & Robinson, D. I. (2011). Physical modelling of Tsunami using a new pneumatic wave generator. Coastal Engineering, 58(6), 517–527.

    Article  Google Scholar 

  6. Farahmandpour, O., Marsono, A. K., Forouzani, P., Tap, M. Md., & Abu Bakar, S., (2020). Experimental simulation of tsunami surge and its interaction with coastal structure. International Journal of Protective Structures, 11(2), 258–280.

    Google Scholar 

  7. Shafiei, S., Melville, B. W., & Shamseldin, A. Y. (2016). Experimental investigation of Tsunami bore impact force and pressure on a square prism. Coastal Engineering, 110, 1–16.

    Article  Google Scholar 

  8. Foster, A. S. J., Rossetto, T., & Allsop, W. (2017). An experimentally validated approach for evaluating tsunami inundation forces on rectangular buildings. Coastal Engineering, 128, 44–57.

    Article  Google Scholar 

  9. Rahman, M. M., & Nakaza, E. (2016). Experimental and numerical simulation of Tsunami bore impact on a building. International Journal of Civil Engineering and Technology, 7(4).

    Google Scholar 

  10. Al-Faesly, T., Palermo, D., Nistor, I., & Cornett, A. (2012). Experimental modeling of extreme hydrodynamic forces on structural models. International Journal of Protective Structures, 3(4), 477–505.

    Article  Google Scholar 

  11. Thusyanthan, N. I., & Gopal Madabhushi, S. P. (2008). Tsunami wave loading on coastal houses: a model approach. In Proceedings of the institution of civil engineers-civil engineering (vol. 161, no. 2, pp. 77–86). Thomas Telford Ltd.

    Google Scholar 

  12. Siegel, F. R. (2019). Adaptations of coastal cities to global warming, sea level rise, climate change and endemic hazards. Springer.

    Google Scholar 

  13. Du, W., & Pan, T. C. (2020). Probabilistic seismic hazard assessment for Singapore. Natural Hazards, 103(3), 2883–2903.

    Article  Google Scholar 

  14. El-Askary, H. M., El-Hattab, M., El-Raey, M., & Kafatos, M. (2009). Impact of sea level rise on the low land area South East of Alexandria, Egypt. In AGU fall meeting abstracts (vol. 2009, pp. NH11A-1097).

    Google Scholar 

  15. Koshimura, S. (2019). Tsunami. In Encyclopedia of ocean sciences (pp. 692–701). Elsevier.

    Google Scholar 

  16. Bryant, E. (2014). Tsunami: The underrated hazard. Springer.

    Google Scholar 

  17. Röbke, B. R., & Vött, A. (2017). The tsunami phenomenon. Progress in Oceanography, 159, 296–322.

    Article  Google Scholar 

  18. Di Risio, M., De Girolamo, P., & Beltrami, G. M. (2011). Forecasting landslide generated tsunamis (pp. 81–106).

    Google Scholar 

  19. Paris, R. (2015). Source mechanisms of volcanic tsunamis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053), 20140380.

    Article  Google Scholar 

  20. Paris, R., Switzer, A. D., Belousova, M., Belousov, A., Ontowirjo, B., Whelley, P. L., & Ulvrova, M. (2014). Volcanic Tsunami: A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea). Natural Hazards, 70(1), 447–470.

    Article  Google Scholar 

  21. Kakinuma, T. (2016). Tsunami generation due to a landslide or a submarine eruption. In Tsunami (pp.35–58). InTech.

    Google Scholar 

  22. Power, W., Downes, G., & Stirling, M. (2007). Estimation of tsunami hazard in New Zealand due to South American earthquakes. In Tsunami and its hazards in the Indian and Pacific oceans (pp. 547–564). Birkhäuser Basel.

    Google Scholar 

  23. Helal, M. A., & Mehanna, M. S. (2008). Tsunamis from nature to physics. Chaos, Solitons & Fractals, 36(4), 787–796.

    Article  Google Scholar 

  24. Gourlay, M. R. (2011). Waves and wave-driven currents.

    Google Scholar 

  25. De Wilde, P., & Carlomagno, G. M. (Eds.). (2019). Computational methods and experimental measurements XIX and earthquake resistant engineering structures XII. WIT Press.

    Google Scholar 

  26. Charvet, I., Eames, I., & Rossetto, T. (2013). New tsunami runup relationships based on long wave experiments. Ocean Modelling, 69, 79–92.

    Article  Google Scholar 

  27. Ward, S. N. (2010). The 1889 Johnstown, Pennsylvania Flood. A physics-based simulation. In The Tsunami threat: research and technology (pp.447–466).

    Google Scholar 

  28. Eliasson, J. (2019). Earthquake-generated landslides and tsunamis. In Earthquakes-impact, community vulnerability and resilience. InTech Open.

    Google Scholar 

  29. Robertson, I., Chock, G., & Morla, J. (2012). Structural analysis of selected failures caused by the 27 February 2010 Chile tsunami. Earthquake Spectra, 28(1_suppl1), 215–243.

    Google Scholar 

  30. Kim, Y. C. (2010). Handbook of coastal and ocean engineering. World Scientific.

    Google Scholar 

  31. Nistor, I., Palermo, D., Cornett, A., & Al-Faesly, T. (2011). Experimental and numerical modeling of tsunami loading on structures. Coastal Engineering Proceedings, 32, 2–2.

    Article  Google Scholar 

  32. Govindasamy, N., Mardi, N. H., & Malek, M. A. (2018). Modelling of tsunami forces on coastal structures: A review.

    Google Scholar 

  33. Hazarika, H., Okada, H., Hara, T., Ueno, M., Ohsumi, T., Yamanaka, M., Yamazaki, T., Kosaka, N., Minowa, H., & Furuichi, H. (2012). Case studies of geotechnical damage by the 2011 off the Pacific Coast of Tohoku Earthquake and Tsunami in Japan. In Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal, Paper (No. 4796).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba A. Bachay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bachay, H.A., Aldefae, A.H., Zubaidi, S.L., Humaish, W.H., Sinichenko, E.K. (2022). Tsunami Waves, Causes and Its Implications: A Review. In: Karkush, M.O., Choudhury, D. (eds) Geotechnical Engineering and Sustainable Construction. Springer, Singapore. https://doi.org/10.1007/978-981-16-6277-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6277-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6276-8

  • Online ISBN: 978-981-16-6277-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics