Skip to main content

Introduction to Neutron Physics

  • Chapter
  • First Online:
Neutron Imaging
  • 855 Accesses

Abstract

The neutron, discovered in 1932 by James Chadwick, is a Fermion with no net electrostatic charge and a mass slightly higher than that of a proton. Owing to some of unique properties, various neutrons-based imaging and non-imaging techniques have been developed and are used extensively in various research applications. In this chapter, we discuss some of the basic properties of the neutron and classify the neutrons as per their energies. A brief discussion about the neutron interaction with matter in terms of scattering cross sections has also been presented. The concept of neutron imaging and its applications for characterization and non-destructive evaluation of wide variety of materials have been discussed to highlight the importance of these techniques. We also discuss a comparison of neutron with the X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://mappingignorance.org/2020/06/10/neutron-sciences-as-an-essential-tool-to-develop-materials-for-a-better-life/. Accessed on 15 July 2021

  2. Bell RE, Elliott LG (1948) Gamma-rays from the reaction 1H(n, γ)D2 and the binding energy of the deuteron. Phys Rev 74(10):1552–1553

    Google Scholar 

  3. Bell RE, Elliott LG (1950) Gamma-rays from the reaction 1H(n, γ)D2 and the binding energy of the deuteron. Phys Rev 79(2):282–285

    Google Scholar 

  4. Shull CG, Billman KW, Wedgwood FA (1967) Experimental limit for the neutron charge. Phys Rev 153(5):1415–1422

    Article  ADS  Google Scholar 

  5. Olive KA (2014) Review of particle physics. Chin Phys C 38(9):090001

    Google Scholar 

  6. Alvarez LW, Bloch F (1940) A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys Rev 57(2):111–122

    Article  ADS  Google Scholar 

  7. Perkins DH (1982) Introduction to high energy physics. Addison-Wesley Advanced Book Program/World Science Division

    Google Scholar 

  8. Bég MAB, Lee BW, Pais A (1964) SU(6) and electromagnetic interactions. Phys Rev Lett 13(16):514–517

    Article  ADS  Google Scholar 

  9. Sherwood JE, Stephenson TE, Bernstein S (1954) Stern-gerlach experiment on polarized neutrons. Phys Rev 96(6):1546–1548

    Article  ADS  Google Scholar 

  10. Hughes DJ, Burgy MT (1949) Reflection and polarization of neutrons by magnetized mirrors. Phys Rev 76(9):1413–1414

    Article  ADS  Google Scholar 

  11. Wietfeldt FE, Greene GL (2011) Colloquium: the neutron lifetime. Rev Mod Phys 83(4):1173–1192

    Article  ADS  Google Scholar 

  12. Yue AT et al (2013) Improved determination of the neutron lifetime. Phys Rev Lett 111(22):222501

    Google Scholar 

  13. Particle Data Group (2018) Review of particle physics. Phys Rev D 98(3):030001

    Google Scholar 

  14. Schlenker M, Baruchel J (1986) Neutron topography: a review. Physica B+C 137(1):309–319

    Google Scholar 

  15. Luschikov VI et al (1969) Observation of ultracold neutrons. Sov Phys—JETP Lett 9:23

    ADS  Google Scholar 

  16. Zeldovich YaB (1959) Storage of cold neutrons. Sov Phys—JETP 9:1389

    Google Scholar 

  17. https://www.psi.ch/en/niag/neutron-physics. Accessed on 15 Sept 2021

  18. https://www.nuclear-power.com/nuclear-power/reactor-physics/atomic-nuclear-physics/fundamental-particles/neutron/neutron-energy/. Accessed on 15 Sept 2021

  19. Carpenter J, Loong C (2015) Elements of slow-neutron scattering: basics, techniques, and applications. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139029315

    Book  Google Scholar 

  20. Ederth T (2018) Neutrons for scattering: what they are, where to get them, and how to deal withthem. EPJ Web Conf 188:01002. https://doi.org/10.1051/epjconf/201818801002. Accessed on 25 August 2021

  21. http://cds.cern.ch/record/1514295/plots. Accessed on 27 July 2021

  22. Kardjilov N, Manke I, Woracek R, Hilger A, Banhart J (2018) Advances in neutron imaging. Mater Today 21:652–672

    Google Scholar 

  23. Shukla M, Roy T, Kashyap Y et al (2018) Development of neutron imaging beamline for NDT applications at Dhruva reactor, India. Nucl Instrum Methods Phys Res Sect A 889:63–68

    Google Scholar 

  24. Saito Y, Mishima K, Tobita Y, Suzuki T, Matsubayashi M (2004) Velocity field measurement in gas–liquid metal two-phase flow with use of PIV and neutron radiography techniques. Appl Radiat Isot 61:683–691

    Google Scholar 

  25. Song B, Dhiman I, Carothers JC, Veith GM, Liu J, Bilheux HZ, Huq A (2019) Dynamic lithium distribution upon dendrite growth and shorting revealed by operando neutron imaging. ACS Energy Lett 4(10):2402–2408

    Google Scholar 

  26. Jacobson DL, Allman BE, McMahon PJ, Nugent KA, Paganin D, Arif M, Werner SA (2004) Thermal and cold neutron phase-contrast radiography. Appl Radiat Isot 61:547–550

    Google Scholar 

  27. Pfeiffer F, Grünzweig C, Bunk O, Frei G, Lehmann E, David C (2006) Neutron phase imaging and tomography. Phys Rev Lett 96:215505

    Google Scholar 

  28. Dawson M et al (2009) Imaging with polarized neutrons. New J Phys 11:043013. https://doi.org/10.1088/1367-2630/11/4/043013. Accessed on 25 August 2021

  29. Piegsa FM, van den Brandt B, Hautle P, Konter JA (2009) A compact neutron Ramsey resonance apparatus for polarised neutron radiography. Nucl Instrum Methods Phys Res Sect A 605:5–8

    Google Scholar 

  30. Iwase et al (2012) In situ lattice strain mapping during tensile loading using the neutron transmission and diffraction methods. J Appl Cryst 45:113–118

    Article  Google Scholar 

  31. Baruchel J, Schlenker M, Palmer SB (1990) Neutron diffraction topographic investigations of “exotic” magneticdomains. Nondestr Test Eval 5(5–6):349–367. https://doi.org/10.1080/02780899008952978

    Article  Google Scholar 

  32. Kardjilov N, Manke I, Hilger A, Strobl M, Banhart J (2011) Neutron imaging in materials science. Mater Today 14:248–256

    Google Scholar 

  33. Mankea I, Banhart J et al (2007) In situ investigation of the discharge of alkaline Zn–MnO2 batteries with synchrotron X-ray and neutron tomographies. Appl Phys Lett 90:214102

    Google Scholar 

  34. Ziesche RF, Arlt T, Finegan DP et al (2020) 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique. Nat Commun 11:777

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh S. Kashyap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, Y.S. (2022). Introduction to Neutron Physics. In: Aswal, D.K., Sarkar, P.S., Kashyap, Y.S. (eds) Neutron Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-16-6273-7_1

Download citation

Publish with us

Policies and ethics